Skip to main content

Improving Hearing Performance Using Natural Auditory Coding Strategies

  • Chapter
  • First Online:
Biomimetics -- Materials, Structures and Processes

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Sound transfer from the human ear to the brain is based on three quite different neural coding principles when the continuous temporal auditory source signal is sent as binary code in excellent quality via 30,000 nerve fibers per ear. Cochlear implants are well-accepted neural prostheses for people with sensory hearing loss, but currently the devices are inspired only by the tonotopic principle. According to this principle, every sound frequency is mapped to a specific place along the cochlea. By electrical stimulation, the frequency content of the acoustic signal is distributed via few contacts of the prosthesis to corresponding places and generates spikes there. In contrast to the natural situation, the artificially evoked information content in the auditory nerve is quite poor, especially because the richness of the temporal fine structure of the neural pattern is replaced by a firing pattern that is strongly synchronized with an artificial cycle duration. Improvement in hearing performance is expected by involving more of the ingenious strategies developed during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Rattay, I.C. Gebeshuber, A.H. Gitter, The mammalian auditory hair cell: a simple electric circuit model. J. Acoust. Soc. Am. 103(3), 1558–1565 (1998)

    Article  ADS  Google Scholar 

  2. E.G. Wever, Theory of Hearing (Wiley, New York, 1949)

    Google Scholar 

  3. H. Helmholtz, Die Lehre von den Tonempfindungen als Physiologische Grundlage für die Theorie der Musik (Vieweg, Braunschweig, 1863) [English translation: A.J. Ellis, On the Sensations of Tones as a Physiological Basis for the Theory of Music (Longmans Green, London, 1875)]

    Google Scholar 

  4. W. Rutherford, A new theory of hearing. J. Anat. Physiol. 21, 166–168 (1886)

    Google Scholar 

  5. E.S. Hochmair, I.J. Hochmair-Desoyer, Percepts elicited by different speech-coding strategies, in Cochlear Prostheses, vol 405, ed. by C.W. Parkins, S.W. Anderson, 268–279 (1983) (Ann. NY Acad. Sci.)

    Google Scholar 

  6. F. Rattay, P. Lutter, Speech sound representation in the auditory nerve: computer simulation studies on inner ear mechanisms. Z. Angew. Math. Mech. 77(12), 935–943 (1997)

    Article  MATH  Google Scholar 

  7. F. Moss, L.M. Ward, W.G. Sannita, Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115, 267–281 (2004)

    Article  Google Scholar 

  8. K. Wiesenfeld, F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  ADS  Google Scholar 

  9. W. Denk, W.W. Webb, A.J. Hudspeth, Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser interferometer. Proc. Natl. Acad. Sci. USA 86, 5371–5375 (1989)

    Article  ADS  Google Scholar 

  10. M.B. Sachs, P.J. Abbas, Rate versus level functions of auditory nerve fibers in cats: Tone burst stimuli. J. Acoust. Soc. Am. 56, 1835–1847 (1974)

    Article  ADS  Google Scholar 

  11. E.M. Relkin, J.R. Doucet, Recovery from prior stimulation. I: relationship to spontaneous firing rates of primary auditory neurons. Hear. Res. 55, 215–222 (1991)

    Google Scholar 

  12. W.A. Svrcek-Seiler, I.C. Gebeshuber, F. Rattay, T.S. Biro, H. Markum, Micromechanical models for the Brownian motion of hair cell stereocilia. J. Theor. Biol. 193(4), 623–630 (1998)

    Article  Google Scholar 

  13. W. Bialek, Quantum noise and the threshold of hearing. Phys. Rev. Lett. 54, 725–728 (1985)

    Article  ADS  Google Scholar 

  14. W. Müller, Untersuchung der Nachschwingzeit in der Cochlea unter Berücksichtigung der Reissnerschen Membran (in German), Master Thesis, TU Vienna, 1996

    Google Scholar 

  15. F. Rattay, A. Mladenka, J. Pontes Pinto, Classifying auditory nerve patterns with neural nets: a modeling study with low level signals. Simul. Pract Theory 6, 493–503 (1998)

    Article  MATH  Google Scholar 

  16. R.P. Morse, E.F. Evans, Enhancement of vowel encoding for cochlear implants by addition of noise. Nat. Med. 2, 928–932 (1996)

    Article  Google Scholar 

  17. M. Chatterjee, M.E. Robert, Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J. Assoc. Res. Otolaryngol. 2(2), 159–171 (2001)

    Article  Google Scholar 

  18. F. Rattay, High frequency electrostimulation of excitable cells. J. Theor. Biol. 123, 45–54 (1986)

    Article  Google Scholar 

  19. F. Rattay, Electrical Nerve Stimulation: Theory, Experiments and Applications (Springer Wien, New York, 1990)

    Google Scholar 

  20. F. Rattay, Basics of hearing theory and noise in cochlear implants. Chaos Solitons Fractals 11, 1875–1884 (2000)

    Article  ADS  MATH  Google Scholar 

  21. L. Litvak, B. Delgutte, D. Eddington, Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J. Acoustic. Soc. Am. 110(1), 368–379 (2001)

    Article  ADS  Google Scholar 

  22. R.S. Hong, J.T. Rubinstein, Conditioning pulse trains in cochlear implants: effects on loudness growth. Otol. Neurotol. 27(1), 50–56 (2006)

    Article  Google Scholar 

  23. B.S. Wilson, R. Schatzer, E.A. Lopez-Poveda, X. Sun, D.T. Lawson, R.D. Wolford, Two new directions in speech processor design for cochlear implants. Ear. Hear. 26(4), 73S–81S Suppl. S (2005)

    Google Scholar 

  24. N.Y.S. Kiang, Discharge Pattern of Single Fibres in the Cat’s Auditory Nerve (MIT Press, Cambridge, 1965)

    Google Scholar 

  25. J.F. Brugge, D.J. Anderson, J.E. Hind, J.E. Rose, Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. J. Neurophysiol. 32(3), 386–401 (1969)

    Google Scholar 

  26. S.A. Shamma, Speech processing in the auditory system. I: the representation of speech sounds in the responses of the auditory nerve. J. Acoust. Soc. Am. 78, 1612–1621 (1985)

    Google Scholar 

  27. E. Javel, Shapes of cat auditory nerve fiber tuning curves. Hear. Res. 81(1–2), 167–188 (1994)

    Article  Google Scholar 

  28. J.B. Nadol, Jr, Comparative anatomy of the cochlea and auditory nerve in mammals. Hear. Res. 34, 253–266 (1988)

    Article  Google Scholar 

  29. S. Tylstedt, A. Kinnefors, H. Rask-Andersen, Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol. 117(4), 505–512 (1997)

    Article  Google Scholar 

  30. F. Rattay, P. Lutter, H. Felix, A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes. Hear. Res. 153(1–2), 43–63 (2001)

    Google Scholar 

  31. S. Tylstedt, H. Rask-Andersen, A 3-D model of membrane specializations between human auditory spiral ganglion cells. J. Neurocytol. 30(6), 465–473 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Rattay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rattay, F. (2011). Improving Hearing Performance Using Natural Auditory Coding Strategies. In: Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, HB., Stachelberger, H., Gebeshuber, I. (eds) Biomimetics -- Materials, Structures and Processes. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11934-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11934-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11933-0

  • Online ISBN: 978-3-642-11934-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics