Advertisement

High-Speed Parallel Software Implementation of the ηT Pairing

  • Diego F. Aranha
  • Julio López
  • Darrel Hankerson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5985)

Abstract

We describe a high-speed software implementation of the η T pairing over binary supersingular curves at the 128-bit security level. This implementation explores two types of parallelism found in modern multi-core platforms: vector instructions and multiprocessing. We first introduce novel techniques for implementing arithmetic in binary fields with vector instructions. We then devise a new parallelization of Miller’s Algorithm to compute pairings. This parallelization provides an algorithm for pairing computation without increasing storage costs significantly. The combination of these acceleration techniques produce serial timings at least 24% faster and parallel timings 66% faster than the best previous result in an Intel Core platform, establishing a new state-of-the-art implementation of this pairing instantiation in this platform.

Keywords

Efficient software implementation vector instructions multi-core architectures bilinear pairings parallelization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, P.S.L.M., Gailbraith, S., Ó hÉigeartaigh, C., Scott, M.: Efficient Pairing Computation on Supersingular Abelian Varieties. Design, Codes and Cryptography 42(3), 239–271 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Wechsler, O.: Inside Intel Core Microarchitecture: Setting new standards for energy-efficient performance. Technology@Intel Magazine (2006)Google Scholar
  3. 3.
    Grabher, P., Groszschaedl, J., Page, D.: On Software Parallel Implementation of Cryptographic Pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas in Cryptography. LNCS, vol. 5381, pp. 34–49. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Hankerson, D., Menezes, A., Scott, M.: Identity-Based Cryptography, ch. 12, pp. 188–206. IOS Press, Amsterdam (2008)Google Scholar
  5. 5.
    Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2: Instruction Set Reference, http://www.intel.com/Assets/PDF/manual/253666.pdf
  6. 6.
    Gueron, S., Kounavis, M.E.: Carry-Less Multiplication and Its Usage for Computing The GCM Mode. White paper, http://software.intel.com/
  7. 7.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Secaucus (2003)Google Scholar
  8. 8.
    Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited. IEEE Transactions on Computers 53(8), 1047–1059 (2004)CrossRefGoogle Scholar
  9. 9.
    Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers (in Russian). Doklady Akad. Nauk SSSR 145, 293–294 (1962)Google Scholar
  10. 10.
    López, J., Dahab, R.: High-speed software multiplication in GF(2m). In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 203–212. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Beuchat, J., López-Trejo, E., Martínez-Ramos, L., Mitsunari, S., Rodríguez-Henríquez, F.: Multi-core implementation of the Tate pairing over supersingular elliptic curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 413–432. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient Implementation of Pairing-Based Cryptosystems. Journal of Cryptology 17(4), 321–334 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology 17(4), 235–261 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. on Information Theory 52, 4595–4602 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Lee, H., Lee, E., Park, C.: Efficient and Generalized Pairing Computation on Abelian Varieties. IEEE Trans. on Information Theory 55(4), 1793–1803 (2009)CrossRefGoogle Scholar
  17. 17.
    Mitsunari, S.: A Fast Implementation of η T Pairing in Characteristic Three on Intel Core 2 Duo Processor. Cryptology ePrint Archive, Report 2009/032 (2009)Google Scholar
  18. 18.
    Cesena, E.: Pairing with Supersingular Trace Zero Varieties Revisited. Cryptology ePrint Archive, Report 2008/404 (2008)Google Scholar
  19. 19.
    Cesena, E., Avanzi, R.: Trace Zero Varieties in Pairing-based Cryptography. In: Conference on Hyperelliptic curves, discrete Logarithms, Encryption, etc. (2009), http://inst-mat.utalca.cl/chile2009/Slides/Roberto_Avanzi_2.pdf
  20. 20.
    Vercauteren, F.: Optimal pairings. Cryptology ePrint Archive, Report 2008/096 (2008)Google Scholar
  21. 21.
    Beuchat, J., Brisebarre, N., Detrey, J., Okamoto, E., Rodríguez-Henríquez, F.: A Comparison Between Hardware Accelerators for the Modified Tate Pairing over \({\mathbb F}_{2^m}\) and \({\mathbb F}_{3^m}\). In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 297–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Diego F. Aranha
    • 1
  • Julio López
    • 1
  • Darrel Hankerson
    • 2
  1. 1.University of Campinas 
  2. 2.Auburn University 

Personalised recommendations