Advertisement

Efficient CCA-Secure PKE from Identity-Based Techniques

  • Junzuo Lai
  • Robert H. Deng
  • Shengli Liu
  • Weidong Kou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5985)

Abstract

Boneh, Canetti, Halevi, and Katz showed a general method for constructing CCA-secure public key encryption (PKE) from any selective-ID CPA-secure identity-based encryption (IBE) schemes. Their approach treated IBE as a black box. Subsequently, Boyen, Mei, and Waters demonstrated how to build a direct CCA-secure PKE scheme from the Waters IBE scheme, which is adaptive-ID CPA secure. They made direct use of the underlying IBE structure, and required no cryptographic primitive other than the IBE scheme itself. However, their scheme requires long public key and the security reduction is loose. In this paper, we propose an efficient PKE scheme employing identity-based techniques. Our scheme requires short public key and is proven CCA-secure in the standard model (without random oracles) with a tight security reduction, under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. In addition, we show how to use our scheme to construct an efficient threshold public key encryption scheme and a public key encryption with non-interactive opening (PKENO) scheme.

Keywords

Chosen Ciphertext Security Public Key Encryption Identity-Based Encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new framework for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. of ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Proc. of ACM CCS 2005, pp. 320–329. ACM Press, New-York (2005)Google Scholar
  8. 8.
    Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Model Revisited. In: Proceedings of STOC 1998. ACM, New York (1998)Google Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with non-interactive opening. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proc. of STOC 1991, pp. 542–552 (1991)Google Scholar
  17. 17.
    Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryption schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report 2002/042 (2002), http://eprint.iacr.org/
  18. 18.
    Galindo, D.: Breaking and Repairing Damgård et al. Public Key Encryption Scheme with Non-interactive Opening. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 389–398. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Goldwasser, S., Tauman, Y.: On the (In)security of the Fiat-Shamir Paradigm. In: Proc. of FOCS. IEEE, Los Alamitos (2003)Google Scholar
  20. 20.
    Hanaoka, G., Kurosawa, K.: Efficient Chosen Ciphertext Secure Public Key Encryption under the Computational Diffie-Hellman Assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Hohenberger, S., Waters, B.: Realizing Hash-and-Sign Signatures under Standard Assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 333–350. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Kiltz, E.: On the Limitations of the Spread of an IBE-to-PKE Transformation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Nielsen, J.B.: Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing Encryption Case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: STOC 2008, pp. 187–196. ACM, New York (2008)CrossRefGoogle Scholar
  31. 31.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  32. 32.
    Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Junzuo Lai
    • 1
  • Robert H. Deng
    • 2
  • Shengli Liu
    • 1
  • Weidong Kou
    • 3
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Information SystemsSingapore Management UniversitySingapore
  3. 3.School of Computer Science and TechnologyXi Dian UniversityXi’anChina

Personalised recommendations