Skip to main content

Phoenix: An Epidemic Approach to Time Reconstruction

  • Conference paper
Wireless Sensor Networks (EWSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5970))

Included in the following conference series:

Abstract

Harsh deployment environments and uncertain run-time conditions create numerous challenges for postmortem time reconstruction methods. For example, motes often reboot and thus lose their clock state, considering that the majority of mote platforms lack a real-time clock. While existing time reconstruction methods for long-term data gathering networks rely on a persistent basestation for assigning global timestamps to measurements, the basestation may be unavailable due to hardware and software faults. We present Phoenix, a novel offline algorithm for reconstructing global timestamps that is robust to frequent mote reboots and does not require a persistent global time source. This independence sets Phoenix apart from the majority of time reconstruction algorithms which assume that such a source is always available. Motes in Phoenix exchange their time-related state with their neighbors, establishing a chain of transitive temporal relationships to one or more motes with references to the global time. These relationships allow Phoenix to reconstruct the measurement timeline for each mote. Results from simulations and a deployment indicate that Phoenix can achieve timing accuracy up to 6 ppm for 99% of the collected measurements. Phoenix is able to maintain this performance for periods that last for months without a persistent global time source. To achieve this level of performance for the targeted environmental monitoring application, Phoenix requires an additional space overhead of 4% and an additional duty cycle of 0.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: ultra-low power data gathering in sensor networks. In: IPSN (2007)

    Google Scholar 

  2. Chang, M., Cornou, C., Madsen, K., Bonnet, P.: Lessons from the Hogthrob Deployments. In: WiDeploy (June 2008)

    Google Scholar 

  3. Chen, Y., Gnawali, O., Kazandjieva, M., Levis, P., Regehr, J.: Surviving sensor network software faults. In: SIGOPS (October 2009)

    Google Scholar 

  4. Commonwealth Scientific and Industrial Research Organisation (CSIRO). 2-year progress report: July 2004 to June 2006 (2004)

    Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill Science/Engineering/Math, New York (2001)

    MATH  Google Scholar 

  6. Dutta, P., Hui, J., Jeong, J., Kim, S., Sharp, C., Taneja, J., Tolle, G., Whitehouse, K., Culler, D.: Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments. In: IEEE SPOTS, pp. 407–415 (2006)

    Google Scholar 

  7. Elson, J.E., Girod, L., Estrin, D.: Fine-grained network time synchronization using reference broadcasts. In: OSDI, December 2002, pp. 147–163 (2002)

    Google Scholar 

  8. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. In: Proceedings of SensSys, November 2003, pp. 138–149 (2003)

    Google Scholar 

  9. Gupchup, J., Musaloiu-Elefteri, R., Szalay, A.S., Terzis, A.: Sundial: Using sunlight to reconstruct global timestamps. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS, vol. 5432, pp. 183–198. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Lukac, M., Davis, P., Clayton, R., Estrin, D.: Recovering temporal integrity with data driven time synchronization. In: IPSN, April 2009, pp. 61–72 (2009)

    Google Scholar 

  11. Luo, L., Huang, C., Abdelzaher, T., Stankovic, J.: EnviroStore: A cooperative storage system for disconnected operation in sensor networks. In: INFOCOM (2007)

    Google Scholar 

  12. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: WSNA, pp. 88–97. ACM, New York (2002)

    Chapter  Google Scholar 

  13. Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchronization protocol. In: SenSys, November 2004, pp. 39–49 (2004)

    Google Scholar 

  14. Marrison, W.A.: The evolution of the quartz crystal clock. The Bell System Technical Journal 27 (1948)

    Google Scholar 

  15. Musaloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-low power data retrieval in wireless sensor networks. In: IPSN, pp. 421–432 (2008)

    Google Scholar 

  16. Musăloiu-E., R., Liang, C.-J.M., Terzis, A.: Koala: Ultra-Low Power Data Retrieval in Wireless Sensor Networks. In: Proceedings of the Seventh International Conference on Information Processing in Sensor Networks (IPSN) (April 2008)

    Google Scholar 

  17. Newell, D.E., Bangert, R.H.: Temperature compensation of quartz crystal oscillators. In: 17th Annual Symposium on Frequency Control 1963, pp. 491–507 (1963)

    Google Scholar 

  18. Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall PTR, Englewood Cliffs (2002)

    Google Scholar 

  19. Sallai, J., Kusy, B., Lédeczi, Á., Dutta, P.: On the scalability of routing integrated time synchronization. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 115–131. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Taneja, J., Jeong, J., Culler, D.: Design, modeling, and capacity planning for micro-solar power sensor networks. In: IPSN 2008, pp. 407–418 (2008)

    Google Scholar 

  21. Texas Instruments Incorporated. MSP430 Datasheet

    Google Scholar 

  22. Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess, S., Gay, D., Hong, W., Dawson, T., Culler, D.: A Macroscope in the Redwoods. In: SenSys (November 2005)

    Google Scholar 

  23. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and Yield in a Volcano Monitoring Sensor Network. In: OSDI (November 2006)

    Google Scholar 

  24. Yang, Y., Wang, L., Noh, D.K., Le, H.K., Abdelzaher, T.F.: Solarstore: enhancing data reliability in solar-powered storage-centric sensor networks. In: Mobisys, pp. 333–346. ACM, New York (2009)

    Chapter  Google Scholar 

  25. Zamalloa, M.Z., Krishnamachari, B.: An analysis of unreliability and asymmetry in low-power wireless links. ACM Trans. Sen. Netw. 3(2), 7 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupchup, J., Carlson, D., Musăloiu-E., R., Szalay, A., Terzis, A. (2010). Phoenix: An Epidemic Approach to Time Reconstruction. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds) Wireless Sensor Networks. EWSN 2010. Lecture Notes in Computer Science, vol 5970. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11917-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11917-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11916-3

  • Online ISBN: 978-3-642-11917-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics