Skip to main content

Stochastic Geometry and Quantum Gravity: Some Rigorous Results

  • Chapter
  • First Online:
Book cover New Paths Towards Quantum Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 807))

  • 1565 Accesses

Abstract

The aim of these lectures is a short introduction into some recent developments in stochastic geometry which have one of its origins in simplicial gravity theory (see Regge Nuovo Cimento 19: 558–571, 1961). The aim is to define and construct rigorously point processes on spaces of Euclidean simplices in such a way that the configurations of these simplices are simplicial complexes. The main interest then is concentrated on their curvature properties. We illustrate certain basic ideas from a mathematical point of view. An excellent representation of this area can be found in Schneider and Weil (Stochastic and Integral Geometry, Springer, Berlin, 2008. German edition: Stochastische Geometrie, Teubner, 2000). In Ambjørn et al. (Quantum Geometry Cambridge University Press, Cambridge, 1997) you find a beautiful account from the physical point of view. More recent developments in this direction can be found in Ambjørn et al. (“Quantum gravity as sum over spacetimes”, Lect. Notes Phys. 807. Springer, Heidelberg, 2010). After an informal axiomatic introduction into the conceptual foundations of Regge's approach the first lecture recalls the concepts and notations used. It presents the fundamental zero-infinity law of stochastic geometry and the construction of cluster processes based on it. The second lecture presents the main mathematical object, i.e. Poisson–Delaunay surfaces possessing an intrinsic random metric structure. The third and fourth lectures discuss their ergodic behaviour and present the two-dimensional Regge model of pure simplicial quantum gravity. We terminate with the formulation of basic open problems. Proofs are given in detail only in a few cases. In general the main ideas are developed. Sufficiently complete references are given.

In Erinnerung an Herbert Ziezold

Based on lectures held at the Instituto de cibernetica, matematica y fisica (ICIMAF), La Habana (Cuba), in March 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ambjørn, “Quantization of Geometry”, in: J. Dalibard, J.M. Raimond, J. Zinn-Justin, (eds.), Les Houches, Session LIII, 1990. Systemes Fondamentaux en Optique Quantique/Fundamental Systems in Quantum Optics. Elsevier Science Publishers B.V. (1995).

    Google Scholar 

  2. J. Ambjørn, B. Durhuus, T. Jonsson, Quantum Geometry, Cambridge University Press, Cambridge (1997).

    Google Scholar 

  3. J. Ambjørn, J. Jurkiewicz, R. Loll, “Quantum gravity as sum over spacetimes”, Lect. Notes Phys. 807. Springer, Heidelberg (2010).

    Google Scholar 

  4. B. Delaunay, Sur la sphére vide, Bull. Acad. Sci. URSS VI, Class. Sci. Math. Nat., 793–800 (1934).

    Google Scholar 

  5. O. Kaiser, Das ergodische Verhalten der Lipschitz-Killing-Krümmung stationärer Thurston-Prozesse, Diplomarbeit, Universität Bielefeld (2008).

    Google Scholar 

  6. K. Krickeberg, Processus ponctuels en statistique, École d’été de St. Flour X-1980, Lect. Notes Math 929, (1982) 206–313.

    MathSciNet  Google Scholar 

  7. V.A. Malyshev. Probability related to quantum gravity. Planar gravity, Russ. Math. Survey 54 (4), (1999) 685–728.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V.A. Malyshev. A.A. Yambartsev, A.A. Zamyatin, Two-dimensional Lorentzian models, Moscow Math. Journ. 1 (3), (2001) 439–456.

    MathSciNet  MATH  Google Scholar 

  9. K.M. Matzutt, Konstruktion zufälliger, lokal endlicher Mosaike, insbesondere Laguerrescher, Diplomarbeit, Universität Bielefeld (2006).

    Google Scholar 

  10. J. Mecke, Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen, Z. Wahrscheinlichkeitstheorie verw. Gebiete 9, (1967) 36–58.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.G. Mürmann, Poisson point processes with exclusions, Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, (1978) 23–37.

    Article  MATH  Google Scholar 

  12. X.X. Nguyen, H. Zessin, Punktprozesse mit Wechselwirkung, Z. Wahrscheinlichkeitstheorie verw. Gebiete 37, (1976) 91–126.

    Article  MATH  Google Scholar 

  13. T. Regge, General relativity without coordinates, Nuovo Cimento 19, (1961) 558–571.

    Article  MathSciNet  Google Scholar 

  14. Yu.G. Reshetnyak, Two-dimensional manifolds of bounded curvature, in: Reshetnyak, Yu.G. (ed.), Geometry IV, Encyclopaedia of Mathematical Sciences, vol. 70, Springer, Berlin (1993).

    Chapter  Google Scholar 

  15. B.D. Ripley, Locally finite random sets: Foundations for point process theory, Annals of Probability 4, (1976) 983–994.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer, Berlin (2008). German edition: Stochastische Geometrie, Teubner, Stuttgart (2000).

    Google Scholar 

  17. W.P. Thurston, The geometry and topology of three manifolds, Electronic version 1.1, http://www.msri.org/publications/books/gt3m/ (2002).

  18. H. Zessin, Specific index and curvature of random simplicial complexes, Izv. Nats. Akad. Nauk Armenii Mat. 37(1), (2002) 70–88.

    MathSciNet  Google Scholar 

  19. H. Zessin, The Thurston Process, Preprint Nr. 171, FSPM, University of Bielefeld, Germany (2005).

    Google Scholar 

  20. H. Zessin, The Gauß-Bonnet theorem for stationary simplicial complexes, Izv. Nats. Akad. Nauk Armenii Mat. 38 (3), (2003) 75–82.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Otto Kaiser and Kai Matzutt for several illuminating discussions. I also thank the referee for his remarks which led to a substantial improvement of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zessin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zessin, H. (2010). Stochastic Geometry and Quantum Gravity: Some Rigorous Results. In: Booß-Bavnbek, B., Esposito, G., Lesch, M. (eds) New Paths Towards Quantum Gravity. Lecture Notes in Physics, vol 807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11897-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11897-5_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11896-8

  • Online ISBN: 978-3-642-11897-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics