Skip to main content

Discussion on the Dynamic Mechanism of Global Tectonics

  • Chapter
The Tectonics of China
  • 2472 Accesses

Abstract

After the evolution of the Chinese continent was described, as presented in this volume, many researchers and students frequently pose the problem of the mechanisms which control the movements of the lithosphere plates, and ask why directions of movement and compression have been changed through the Earth’s history including the evolution of Chinese continent. These are major problems confronted by all geoscientists. The dynamic mechanisms of global tectonics are generally considered to lie outside the scope of courses on the tectonics of China, so that it would be possible to avoid these difficult problems in this book. However, it is not possible to discuss the dynamic mechanisms which have affected the Chinese continental plate, without considering the whole field of global tectonics. In order that readers may understand the present status of research into global tectonic mechanisms, all the reasonable hypotheses proposed in the past, and those being considered currently are reviewed, analyzed and commented upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allègre CJ (1985) De la Pierre àÍ Etoile. Librairie Arthème Fayard.

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F et al (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108.

    Article  Google Scholar 

  • Bigwaard H, Spakman W, Engdahl E (1998) Closing the gap between regional and global travel tomography. J. Geophys. Res. B 103: 30055–30078.

    Article  Google Scholar 

  • Bott MHP, Kusznir NJ (1984) The origin of tectonic stress in the lithosphere. Tectonophysics 105: 1–13.

    Article  Google Scholar 

  • Bott MHP, Kusznir NJ (1991) Sublithospheric loading and plate-boundary forces. Phil. Trans. R. Soc. Lond. A 337: 83–93.

    Article  Google Scholar 

  • Bucher WH (1933) The Deformation of the Earth’s Crust. Princeton University Press, Princeton.

    Google Scholar 

  • Burchfiel BC, Chen ZL, Hodges KV et al (1992) The south Tibetan detachment system, Himalayan Orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Special Paper-GSA, 269: 41.

    Google Scholar 

  • Cande SC, La Brecque JL, Larson RL et al (1989) Magnetic lineations of the world’s ocean basins. AAPG, Tulsa, Oklahoma.

    Google Scholar 

  • Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. B 97(10): 13917–13951.

    Article  Google Scholar 

  • Cavazza W, Roure FM, Spakman W et al (2004) The TA Atlas—the Mediterranean Region from Crust to Mantle. Springer, Heidelberg.

    Book  Google Scholar 

  • Condie KC (2001) Mantle Plumes and Their Record in Earth History. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Crough TS (1983) Hotspot swells. Annu. Rev. Earth Planet. Sci. 11: 165–193.

    Article  Google Scholar 

  • Dirac PAM (1974) Cosmological models and the large numbers hypothesis. Proc. R. Soc. 338 A: 439–446.

    Article  Google Scholar 

  • England P, Molnar P (1991) Inferences of deviation stress in actively deforming belts from simple physical models. Phil. Trans. R. Soc. Lond. A 337: 151–164.

    Article  Google Scholar 

  • Erickson DJ, Dickson SM (1987) Global trace element biogeochemistry at the KIT boundary: Oceanic and biotic response to a hypothetical meteorite impact. Geology 15: 1014–1017.

    Article  Google Scholar 

  • Ernst RE, Baragar WRA (1992) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356: 511–513.

    Article  Google Scholar 

  • Forsyth D, Uyeda S (1975) On the relative importance of the driving forces of plate motion. Geophys. J. R. Astron. Soc. 43: 163–200.

    Google Scholar 

  • Ge XH, Liu YJ, Ren SN (2002) Uplift dynamics of the Qinghai-Tibet plateau and Altun fault. Geology in China, 29(4): 346–350 (in Chinese with English abstract).

    Google Scholar 

  • Glass BP (1982) Introduction to Planetary Geology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Glikson A (1980) Precambrian sial-sima relation, evidence for earth expansion. Tectonophysics 6(3): 193–234

    Article  Google Scholar 

  • Grabau AW (1940) The Rhythm of the Ages. Henri Vetch, Peking.

    Google Scholar 

  • Grand SP, Van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: a snapshot of convection in the Earth. GSA Today 7(4): 1–7

    Google Scholar 

  • Grieve RAF (1990) Terrestrial impact: the record in the rocks. Meteoritics 26: 175–194.

    Google Scholar 

  • Griggs DT (1939) Creep of rock. J. Geol. 47: 225–251.

    Article  Google Scholar 

  • Hames WE, Renne PR, Ruppel C (2000) New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American margin. Geology 28: 859–862.

    Article  Google Scholar 

  • Hay WW (1988) Paleoceanography: a review of the GSA centennial. GSA Bulletin 100: 1934–1956.

    Article  Google Scholar 

  • Herrick RR (1999) Small mantle upwellings are pervasive on Venus and Earth. Geophys. Res. Lett. 26: 803–806.

    Article  Google Scholar 

  • Hibsch C, Jarrige JJ, Cushing EM et al (1995) Paleostress analysis, a contribution to the understanding of basin tectonics and geodynamic evolution: example of the Permian-Cenozoic tectonics of Great Britain and geodynamic implications in Western Europe. Tectonophysics 252: 103–136.

    Article  Google Scholar 

  • Hill RI, Campbell IH, Davies GF et al (1992) Mantle plumes and continental tectonics. Science 256: 186–193.

    Article  Google Scholar 

  • Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland Inside-out? Science 252: 1409–1412.

    Article  Google Scholar 

  • Holmes A (1944) Principles of Physical Geology. Thomas Nelson and Sons, London.

    Google Scholar 

  • Hoyle F, Narliker JV (1971) On the nature of mass. Nature 233: 41–44.

    Article  Google Scholar 

  • Hsu KJ, Sun S, Li JL (1987) Been South China orogenic zone, but not South China platform. Science in China B 10: 1107–1115 (in Chinese).

    Google Scholar 

  • Hsu KJ (1989) Time and place in Alpine orogenesis. Geol. Soc. London Spec. Pub. 45: 421–443.

    Article  Google Scholar 

  • Hsu KJ, Li J, Chen H et al (1990) Tectonics of South China: key to understanding West Pacific geology. Tectonophysics 183: 9–39.

    Article  Google Scholar 

  • Jeffreys H (1929) The Earth, 2nd edn. Cambridge University Press, London.

    Google Scholar 

  • Keller G et al (2007) Chicxulub impact predates K-T boundary: New evidence from Brazos, Texas. Earth & Planetary Science Letters 255: 339–356.

    Article  Google Scholar 

  • Le Pichon S, Francheteau J, Bonin J (1973) Plate tectonics. Elsevier Publishing Company, New York.

    Google Scholar 

  • Le Roux JP (1994) Impacts, tillites, and the breakup of Gondwanaland: a second discussion. J. Geology, 102: 483–485.

    Article  Google Scholar 

  • Li JL (1991) Time and special problems of lithospheric tectonic evolution in orogenic belts. In: Annual Report (1989–1990) of Open Laboratory of Lithosphere Tectonic Evolution, Institute of Geology, Chinese Academy of Sciences. China Science and Technology Press, Beijing (in Chinese).

    Google Scholar 

  • Li SG ( Lee JS) (1947) Fundaments and methods of geological mechanics. In: Geological mechanics methods. Science Press, Beijing (in Chinese).

    Google Scholar 

  • Li SG (1962) An Introduction to Geomechanics. Geological Publishing House, Beijing (in Chinese).

    Google Scholar 

  • Liu BP, Chen F (1995) Mid-Jurassic bio-climate events and their dynamic significance of the sphere of the Earth. In: Annual Report of the Laboratory of Lithosphere Tectonics and Its Dynamics (MGMR), 1994. Seismological Press, Beijing.

    Google Scholar 

  • Liu BP, Feng QL, Chonglakmain C et al (2002) Framework of paleotethyan archipelago ocean of western Yunnan and its elongation towards north and south. Earth Science Frontiers 9(3): 161–171 (in Chinese with English abstract).

    Google Scholar 

  • Ma XY (chief editor, Editorial Board for Lithospheric Dynamics Atlas of China, State Seismological Bureau) (1989) Lithospheric Dynamics Atlas of China. SinoMaps Press, Beijing (in Chinese).

    Google Scholar 

  • Ma ZJ, Li CT, Gao XL (1996) Global Ceno-Mesozoic tectonic basin characteristics. Geological Science & Technology Information 15(4): 21–25 (in Chinese with English abstract).

    Google Scholar 

  • Maruyama S (1994) Plume tectonics. Journal of the Geological Society of Japan 100(1): 24–49.

    Article  Google Scholar 

  • Marzoli A et al (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province. Science 284 (5,414): 616–618.

    Article  Google Scholar 

  • Mattauer M (1999) Seismique et tectonique. Pour la Science (265): 28–31.

    Google Scholar 

  • McMenamin MAS, McMenamin DLS (1990) The Emergence of Animals-The Cambrian Breakthrough. Columbia University Press, New York.

    Google Scholar 

  • McNutt MK (1998) Superswells. Rev. Geophys. 36(2): 211–244.

    Article  Google Scholar 

  • Melcher F, Meisel T, Puhl J et al (2002) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65(1–2): 69–112.

    Article  Google Scholar 

  • Mercier JCC (1980) Magnitude of the continental lithospheric stresses inferred from rheomorphic petrology. Jour. Geophys. Res. B 85(11): 6293–6303.

    Article  Google Scholar 

  • Meyerhoff AA, Agocs WB, Taner I et al (1992) Origin of midocean ridges. In: Chatterjee S, Horton N III(eds) New Concepts in Global Tectonics, 151-178. Texas Tech University Press, Lubbock.

    Google Scholar 

  • Meyerhoff AA, Taner I, Morris AEL et al (1996) Surge tectonics: a new hypothesis of global geodynamics. 323pp. Kluwer Academic Publishers, Dordrecht-Boston-London.

    Book  Google Scholar 

  • Milanovsky EE (1980) Problems in the tectonic development of the earth in the light of concepts on its pulsation and expansion. Rev. Geol. Dynam. Geol. Physique, 22(1): 15–27.

    Google Scholar 

  • Minster JB, Jordan TH (1978) Present-day plate motions. J. Geophys. Res., A, Space Physics 83(B11): 5331–5354.

    Article  Google Scholar 

  • Moore GW (1989) Mesozoic and Cenozoic paleogeographic development of the Pacific region. Abstracts, of 28th International Geological Congress, 2-455-456. Washington DC, USA.

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230(5,288): 42–43.

    Article  Google Scholar 

  • NASA (2010) Finding impact craters. http://Craters.gsfc.nasa.gov. Accessed 10 May 2010.

    Google Scholar 

  • Norris RD, Kroon D et al (1998) Proceedings of the Ocean Drilling Program, Initial Report, vol. 171 B, College Station, TX (Ocean Drilling Program)

    Google Scholar 

  • Oberbeck VR, Marshall JR, Aggarwal H (1993) Impact, tillites, and the breakup of Gondwanaland. J. Geology 101: 1–19.

    Article  Google Scholar 

  • Owen HG (1992) Has the Earth increased in size? In: Chatterjee S, Horton N (eds) New Concepts in Global Tectonics. Texas Tech University Press, Lubbock.

    Google Scholar 

  • Pavoni N (1997) Geotectonic bipolarity: evidence of bicellular convection in the Earth’s mantle. S. Afr. J. Geol. 100(4): 291–299.

    Google Scholar 

  • Peng YQ, Yin HF (2002) The global changes and bio-effects across the Paleozoic-Mesozoic transition. Earth Science Frontiers 9(3): 85–93 (in Chinese with English abstract).

    Google Scholar 

  • Pick T, Tauxe L (1993) Geomagnetic paleointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature 266: 238–242.

    Article  Google Scholar 

  • Press F, Siever R (1974) Earth, 1st edn. W. H. Freeman and Company, New York.

    Google Scholar 

  • Prevot M, Derder ME, Mcwilliams M et al (1990) Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low. Earth and Planetary Science Letters 97: 129–139.

    Article  Google Scholar 

  • Prinn RG, Fegley B (1987) Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters 83: 1–15.

    Article  Google Scholar 

  • Prothero DR, Ivany LC, Nesbitt EA (2002) From Greenhouse to Icehouse-The Marine Eocene-Oligocene Transition. Columbia University Press, New York.

    Google Scholar 

  • Rampino MR, Stothers RB (1984) Geological rhythm and cometary impacts. Sciences 226(4681): 1427–1431.

    Article  Google Scholar 

  • Rampino MR, Stothers RB (1984) Terrestrial mass extinctions: cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature 308(5961): 709–712.

    Article  Google Scholar 

  • Rampino MR, Stothers RB (1988) Flood basalt volcanism during the past 250 million years. Science 241(4,866): 663–668.

    Article  Google Scholar 

  • Rampino MR, Volk T (1988) DMS and the KIT boundary: phytoplankton extinctions, reduction in cloud albedo, and climatic warming. Nature 322: 63–65.

    Article  Google Scholar 

  • Raymond CA, Stock JM, Cande SC (2000) Fast Paleogene motion of Pacific hotspots from revised global plate circuit constraints. The History and Dynamics of Global Plate Motions. Geophysical Monographys, 121: 359–375.

    Article  Google Scholar 

  • Scheidegger AE (1963) Principles of Geodynamics, 2nd edn. Springer-Verlag, Berlin.

    Google Scholar 

  • Scheidegger AE (1982) Principles of Geodynamics, 3rd edn. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous anoxic events: causes and consequences. Geol. Mijnhouw 55: 179–184

    Google Scholar 

  • Sengör AMC (1982) Edward Suess’ relations to the pre-1950 schools of thought in global tectonics. Geol. Rundsch. 71(2): 381–420.

    Article  Google Scholar 

  • Senger AMC (1989) Tectonic Evolution of the Tethyan Region. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Senger AMC (1991) Timing of orogenic events: A persistent geological controversy. In: Muller DW, McKenzie JA, Weissert H (eds) Controversies in Modern Geology: Evolution of Geological Theories in Sedimentology, Earth History and Tectonics. Academic Press, London.

    Google Scholar 

  • Sharma M (1997) Siberian traps. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism. Geophysical Monograph 100: 273–295. American Geophysical Union, Washington DC.

    Chapter  Google Scholar 

  • Sharpton VL, Dalrymple GB, Marin LE et al (1992) New links between the Chicxulub impact structure and the Cretaceous Tertiary boundary. Nature 359 (6398): 819–821.

    Article  Google Scholar 

  • Shi YL (1976) Preliminary analysis on the e type tectonic stress field. Geomechanis Communication (1): 39–54 (in Chinese).

    Google Scholar 

  • Smith AG, Hurley AM, Briden JC (1981) Phanerozoic Paleocontinental World Maps. Cambridge University Press, Cambridge.

    Google Scholar 

  • Song XD, Richards PG (1996) Seismological evidence for differential rotation of the Earth’s inner core. Nature 382(6,588): 221–224.

    Article  Google Scholar 

  • Storey BC (1995) The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377: 301–308.

    Article  Google Scholar 

  • Storey BC, Kyle PR (1997) An active mantle mechanism for Gondwana breakup. S. Afr. J. Geol. 100(4): 283–290.

    Google Scholar 

  • Su WJ, Dzicwenski AM, Jeanloz R (1996) Planet within a planet: Rotation of the Inner core of the Earth. Science 274(5,294): 1883–1887.

    Article  Google Scholar 

  • Teng JW (2001) The exchange of substance and energy, different sphere coupling and deep dynamical process within the Earth. Earth Science Frontiers 8(3): 1–8 (in Chinese with English abstract).

    Google Scholar 

  • Turcotte DL, Schubet G (1982) Geodynamics: Applications of Continuum Physics to Geophysical Problems. John Wiley & Sons, New York

    Google Scholar 

  • Umbgrove JHF (1947) The Pulse of the Earth. The Hague, Nihoff.

    Google Scholar 

  • Unrug R (1996) The assembly of Gondwanaland-Scientific results of IGCP Project 288: Gondwanaland suture and mobil belts. Episodes 19(1–2): 11–20.

    Google Scholar 

  • Van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386 (6,625): 578–584.

    Article  Google Scholar 

  • Van der Voo R, Spakman W, Bijwaard H (1999) Mesozoic subducted slabs under Siberia. Nature 397(6716):246–249.

    Article  Google Scholar 

  • Wan TF, Cao RP (1992) Tectonic events and stress fields of Middle Eocene-Early Pleistocene in China. Geoscience 6(3): 275–285 (in Chinese with English abstract).

    Google Scholar 

  • Wan TF (1994) Intraplate Deformation, Tectonic Stress and Their Application for Eastern China in Meso-Cenozoic. China University of Geosciences Press, Wuhan.

    Google Scholar 

  • Wan TF, Cao XH (1997) Estimation of differential stress magnitude in Middle-Late Triassic to Early Pleistocene for China. Earth Science 22(2): 145–152 (in Chinese with English abstract)

    Google Scholar 

  • Wan TF (1997) On the accretion of Eastern Asian continental blocks since Triassic. Journal of China University of Geosciences 8(2): 114–120

    Google Scholar 

  • Wang HZ, Mo XX (1995) An outhne of the tectonic evolution of China. Episodes 18(1–2): 6–16.

    Google Scholar 

  • Wang HZ (1995) Retrospect of the study on global tectonics. Earth Science Frontiers 2(1): 37–42, 66 (in Chinese with English abstract).

    Google Scholar 

  • Wang R, He GQ (1979) Rate change of Earth and the global stress field caused by its tide-drawing force under the condition of axial symmetry. In: Astronomical Observatory of Shanghai, Astronomical Geodynamics Memoirs, 8–21. Science Press, Beijing (in Chinese).

    Google Scholar 

  • Wilson JT (1963) A possible origin of the Hawanan Island. Can. J. Physics 41: 863–868.

    Article  Google Scholar 

  • Wilson JT (1970) Continents Adrift: Readings From Scientific American. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Wolbach WS, Lewis RS, Anders E (1985) Cretaceous extinctions: evidence for wildfires and search for meteoric material. Science 230(4,722): 167–170.

    Article  Google Scholar 

  • Xu ZQ, Zhao ZX, Yang JS et al (2003) Tectonics beneath plates and mantle dynamics. Geological Bulletin of China 22(3): 149–159 (in Chinese with English abstract).

    Google Scholar 

  • Yang ZY, Ma XH, Huang BC et al (1998) Polar wander paths of magnetism and block migration of north China in Phanerozoic. Science in China B 28 (suppl.): 44–56 (in Chinese).

    Google Scholar 

  • Yang ZY, Wu SB, Yin HF et al (1991) Geological Events of Permo-Triassic Transitional Period in South China. Geological Publishing House, Beijing (in Chinese with English abstract).

    Google Scholar 

  • Yin YH, Wan TF (1996) The possibility and dynamics of a microtektite Impacted the Pacific plate and caused the change of its moving direction in the end of Eocene. In: 1995 Annual Report, The Laboratory of Lithosphere Tectonics and Its Dynamics (MGMR China), pp.122–132. Geological Publishing House, Beijing.

    Google Scholar 

  • Yin HF, Xu DY, Wu RT (1988) Catastrophism of Geological Evolution. China University of Geosciences Press, Wuhan (in Chinese).

    Google Scholar 

  • Young GM (1993) Impacts, tillites, and the breakup of Gondwanaland: discussion and reply. J. Geology 101(5): 675–683.

    Article  Google Scholar 

  • Zang SX, Ning YJ (1994) Advanced and problems of global dynamics research. In: Contribution to Proseminar of Modern Geodynamics. Seismological Press, Beijing (in Chinese).

    Google Scholar 

  • Zhang GW, Zhang BR, Yuan XC (1996) Orogenic Process of Qinling Orogenic Belt and Three Dimensional Structural Map Series of Lithosphere. Science Press, Beijing (in Chinese).

    Google Scholar 

  • Zhang GW, Guo AL, Yao AP (2006) Considering on research of Chinese continental geology and tectonics. Progress of Natural Science (10): 12–17.

    Google Scholar 

  • Zhang SX (1996) Did the impact result in the breakup of Gondwanaland? In: 1995 Annual Report, The Laboratory of Lithosphere Tectonics and its Dynamics (MGMR), pp.95–104. Geological Publishing House, Beijing (in Chinese).

    Google Scholar 

  • Zhang WY et al (1959) An Outline of Tectonics of China. Science Press, Beijing(in Chinese).

    Google Scholar 

  • Zoback ML, Magee M (1991) Stress magnitudes in the crust: constraints from stress orientation and relative magnitude data. Phil. Trans. R. Soc. Lond. A 337(1,645): 181–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wan, T. (2010). Discussion on the Dynamic Mechanism of Global Tectonics. In: The Tectonics of China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11868-5_15

Download citation

Publish with us

Policies and ethics