Skip to main content

Enhanced Cardiac Differentiation of Mouse Embryonic Stem Cells by Electrical Stimulation

  • Chapter
  • First Online:

Abstract

Cardiovascular diseases account for more deaths than any other illness. Cardiac tissue engineering has turned to embryonic stem cells as a renewable source of myocytes for use in tissue replacement. Existing methods for stem cell differentiation toward the cardiac lineage are relatively non-specific, yielding low numbers of myocytes with varying contraction frequencies and strengths. Here we describe novel experimental approaches, utilizing an electrical stimulation regimen, aimed at increasing the efficiency of cardiac differentiation from mouse embryonic stem (mES) cells. These methods generate cardiac myocytes with functional characteristics that more closely resemble native tissues. The amplitude, duration, and frequency of the electrical stimulus as well as the timing of its onset are some of the critical experimental parameters that determine the enhancement of cardiac differentiation.

In order to form embryoid bodies, an optimum differentiation regime was followed incorporating the hanging drop method followed by suspension culture and subsequent post-plating on conductive slides with electrical stimulation. Approximately three times more stimulated mES cells exhibited evidence of cardiac differentiation than their non-stimulated counterparts, as determined by the expression of ventricular marker myosin light chain-2v. Spontaneous contractions of the stimulated cell populations began up to 1 day earlier and had an average beat frequency close to that of the stimulus applied during differentiation. The spontaneously contracting regions had larger areas of contraction, which beat more rhythmically, as determined by real-time digital imaging analysis.

Our results suggest that appropriate electrical stimulation generates greater numbers of more robust cardiac myocytes, which in turn may be better suited for repairing or regenerating an ailing heart and for use as 3D model systems for drug discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lloyd-Jones D, et al. Heart disease and stroke statistics 2009 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation. 2009; 119:e21–e181.

    Article  Google Scholar 

  2. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001; 344:1750–1757.

    Article  Google Scholar 

  3. Gerecht-Nir S, Radisic M, Park H, Cannizzaro C, Boublik J, Langer R, Vunjak-Novakovic G. Biophysical regulation during cardiac development and application to tissue engineering. Int J Dev Biol. 2006; 50:233–243.

    Article  Google Scholar 

  4. Zhang LI, Poo MM. Electrical activity and development of neural circuits. Nat Neurosci. 2001; 4 (Suppl):1207–1214.

    Article  Google Scholar 

  5. Gomez N, Schmidt CE. Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A. 2007; 81:135–149.

    Google Scholar 

  6. Guo Y, Li M, Mylonakis A, Han J, MacDiarmid AG, Chen X, Lelkes PI, Wei Y. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications. Biomacromolecules. 2007; 8:3025–3034.

    Article  Google Scholar 

  7. Bidez PR, Li S, MacDiarmid AG, Venancio EC, Wei Y, Lelkes PI. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomat Sci. 2005; 17:199–212.

    Article  Google Scholar 

  8. Li M, Bidez P, Guterman-Tretter E, Gou Y, MacDiarmid AG, Lelkes PI, Yuan XB, Yuan XY, Sheng J, Li H, Song CX, Wei Y. Research progress on electroactive and electrically conductive polymers for tissue engineering scaffolds. Acta Acad Med Sin. 2006; 28:845–848.

    Article  Google Scholar 

  9. Bieberich E, Anthony GE. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST). Biosens Bioelectron. 2004; 19:923–931.

    Article  Google Scholar 

  10. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008; 14:213–221.

    Article  Google Scholar 

  11. Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes. Circ Res. 2006; 98:1002–1013.

    Article  Google Scholar 

  12. Jawad H, Lyon AR, Harding SE, Ali NN, Boccaccini AR. Myocardial tissue engineering. Br Med Bull. 2008; 87:31–47.

    Article  Google Scholar 

  13. Genovese J, Cortes-Morichetti M, Chachques E, Frati G, Patel A, Chachques JC. Cell based approaches for myocardial regeneration and artificial myocardium. Curr Stem Cell Res Ther. 2007; 2:21–27.

    Article  Google Scholar 

  14. Roccio M, Goumans MJ, Sluijter JP, Doevendans PA. Stem cell sources for cardiac regeneration. Panminerva Med. 2008; 50:19–30.

    Google Scholar 

  15. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985; 87:27–45.

    Google Scholar 

  16. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001; 17:435–462.

    Article  Google Scholar 

  17. Bettiol E, Clement S, Krause KH, Jaconi ME. Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol. 2006; 157:1–30.

    Google Scholar 

  18. Mummery C, van der Heyden MA, de Boer TP, Passier R, Ward D, van den Brink S, van Rooijen M, van de Stolpe A. Cardiomyocytes from human and mouse embryonic stem cells. Methods Mol Med. 2007; 140:249–272.

    Article  Google Scholar 

  19. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development. 1993; 119:419–431.

    Google Scholar 

  20. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002; 91:189–201.

    Article  Google Scholar 

  21. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox Gene Nkx2-5. Genes Dev. 1995; 9:1654–1666.

    Article  Google Scholar 

  22. Tanaka M, Wechsler SB, Lee IW, Yamasaki N, Lawitts JA, Izumo S. Complex modular cis-acting elements regulate expression of the cardiac specifying homeobox gene Csx/Nkx2.5. Development. 1999; 126:1439–1450.

    Google Scholar 

  23. Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development. 1997; 124:793–804.

    Google Scholar 

  24. Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHAND during murine heart development. Genes Dev. 1997; 11:1357–1369.

    Article  Google Scholar 

  25. Katoh T, Lowey S. Mapping myosin light chains by immunoelectron microscopy. Use of anti-fluorescyl antibodies as structural probes. J Cell Biol. 1989; 109:1549–1560.

    Article  Google Scholar 

  26. Robbins J, Gulick J, Sanchez A, Howles P, Doetschman T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J Biol Chem. 1990; 265:11905–11909.

    Google Scholar 

  27. Sanchez A, Jones WK, Gulick J, Doetschman T, Robbins J. Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. J Biol Chem. 1991; 266:22419–22426.

    Google Scholar 

  28. Miller-Hance WC, LaCorbiere M, Fuller SJ, Evans SM, Lyons G, Schmidt C. In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J Biol Chem. 1993; 268:25244–25252.

    Google Scholar 

  29. Zhao XS, Gallardo TD, Lin L, Schageman JJ, Shohet RV. Transcriptional mapping and genomic analysis of the cardiac atria and ventricles. Physiol Genomics. 2002; 12:53–60.

    Google Scholar 

  30. O’Brien TX, Lee KJ, Chien KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci. 1993; 90:5157–5161.

    Article  Google Scholar 

  31. Chen J, Kubalak SW, Minamisawa S, Price RL, Becker KD, Hickey R. Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem. 1998; 273:1252–1256.

    Article  Google Scholar 

  32. Faerman A, Shani M. The expression of the regulatory myosin light chain 2 gene during mouse embryogenesis. Development. 1993; 118:919–929.

    Google Scholar 

  33. Franco D, Markman MM, Wagenaar GT, Ya J, Lamers WH, Moorman AF. Myosin light chain 2a and 2v identifies the embryonic outflow tract myocardium in the developing rodent heart. Anat Rec. 1999; 254(1):135–146.

    Article  Google Scholar 

  34. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol. 2005; 166:1781–1791.

    Article  Google Scholar 

  35. Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng. 2001; 78:442–453.

    Article  Google Scholar 

  36. Gerecht-Nir S, Smadar Cohen S, Itskovitz-Eldor J. Bioreactor cultivation enhances the efficiency of Human Embryoid Body (hEB) formation and differentiation. Biotech Bioeng. 2004; 86(5):493–502.

    Article  Google Scholar 

  37. Lake J, Rathjen J, Remiszewski J, Rathjen PD. Reversible programming of pluripotent cell differentiation. J Cell Sci. 2000; 113:555–566.

    Google Scholar 

  38. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001; 108:407–414.

    Google Scholar 

  39. Fijnvandraat AC, van Ginneken ACG, de Boer PAJ, Ruijter JM, Christoffels VM, Moorman AFM, et al. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc Res. 2003; 58:399–409.

    Article  Google Scholar 

  40. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003; 93:32–39.

    Article  Google Scholar 

  41. Sachinidis A, Gissel C, Nierhoff D, Hippler-Altenburg R, Sauer H, Wartenberg M. Identification of platelet-derived growth factor-BB as cardiogenesis-inducing factor in mouse embryonic stem cells under serum-free conditions. Cell Physiol Biochem. 2003; 13:423–429.

    Article  Google Scholar 

  42. Wobus AM, Rohwedel J, Maltsev V, Hescheler J. Development of cardiomyocytes expressing cardiac-specific genes, action potentials, and ionic channels during embryonic stem cell-derived cardiogenesis. Acad Sci. 1995; 752:460–469.

    Article  Google Scholar 

  43. Wobus AM, Kaomei G, Shan J, Wellner MC, Rohwedel J, Guanju J. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol. 1997; 29:1525–1539.

    Article  Google Scholar 

  44. Hidaka K, Lee JK, Kim HS, Ihm CH, Iio A, Ogawa M, et al. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 2003; 17:740–742.

    Google Scholar 

  45. Fujiwara S. Retinoids and nonvertebrate chordate development. J Neurobiol. 2006; 66:645–652.

    Article  Google Scholar 

  46. Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. J Neurobiol. 2006; 66:739–756.

    Article  Google Scholar 

  47. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002; 91:501–508.

    Article  Google Scholar 

  48. Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 2003; 9:767–778.

    Article  Google Scholar 

  49. Ventura C, Maioli M, Asara Y, Santoni D, Mesirca P, Remondini D. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J. 2005; 19:155–157.

    Google Scholar 

  50. Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 2000; 14:669–679.

    Google Scholar 

  51. Haupt HA. Electrical stimulation of osteogenesis. South Med J. 1984; 77:56–64.

    Article  Google Scholar 

  52. Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin. 2005; 10:579–593.

    Article  Google Scholar 

  53. Jaeger RJ. Principles underlying functional electrical stimulation techniques. J Spinal Cord Med. 1996; 19:93–96.

    Google Scholar 

  54. Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J. 2008; 7:1256–1269.

    Article  Google Scholar 

  55. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci. 2004; 101:18129–18134.

    Article  Google Scholar 

  56. Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. AJP Heart Circ Physiol. 2005; 288:H1620–H1626.

    Article  Google Scholar 

  57. Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G. Electrical stimulation systems for cardiac tissue engineering. Nat Protoc. 2009; 4:155–173.

    Article  Google Scholar 

  58. Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci. 1997; 94:8948–8953.

    Article  Google Scholar 

  59. Guterman E, Cheng S, Palouian K, Bidez PR, Lelkes PI, Wei Y. Peptide-modified electroactive polymers for tissue engineering applications. Polym Prepr Am Chem Soc Div Polym Chem. 2003; 43:766–767.

    Google Scholar 

  60. Abilez O, Benharash P, Miyamoto E, Gale A, Xu C, Zarins CK. P19 progenitor cells progress to organized contracting myocytes after chemical and electrical stimulation: implications for vascular tissue engineering. J Endovasc Ther. 2006; 13:377–388.

    Article  Google Scholar 

  61. Chen MQ, Xie X, Hollis Whittington R, Kovacs GT, Wu JC, Giovangrandi L. Cardiac differentiation of embryonic stem cells with point-source electrical stimulation. Conf Proc IEEE Eng Med Biol Soc. 2008; 2008:1729–1732.

    Google Scholar 

  62. Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, Ozawa M, Ohyama-Goto R, Kitamura N, Kawano M, Tan-Takeuchi K, Ohtsuka C, Miyawaki A, Takashima A, Ogawa M, Toyama Y, Okano H, Kondo T. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells. 2007; 25:562–570.

    Article  Google Scholar 

  63. Wong JY, Langer R, Ingber DE. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci USA. 1994; 91:3201–3204.

    Article  Google Scholar 

  64. Aoki T, Tanino M, Sanui K, Ogata N, Kumakura K. Secretory function of adrenal chromaffin cells cultured on polypyrrole films. Biomaterials. 1996; 17:1971–1974.

    Article  Google Scholar 

  65. Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials. 2001; 22:1055–1064.

    Article  Google Scholar 

  66. Lee JW, Serna F, Nickels J, Schmidt CE. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules. 2006; 7:1692–1695.

    Article  Google Scholar 

  67. Jun I, Jeong S, Shin H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials. 2009; 30:2038–2047.

    Article  Google Scholar 

  68. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W. The transcription factor MTF-1 is essential for basal and heavy metal induced metallothionein gene expression. EMBO J. 1994; 13:2870–2875.

    Google Scholar 

  69. Muller M, Fleischmann BK, Selbert S, Ji GJ, Endle E, Middeler G. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J. 2000; 14:2540–2548.

    Article  Google Scholar 

  70. Loebel DA, Watson CM, De Young RA, Tam PP. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol. 2003; 264:1–14.

    Article  Google Scholar 

  71. Saito S, Liu B, Yokoyama K. Animal embryonic stem (ES) cells: self-renewal, pluripotency, transgenesis and nuclear transfer. Hum Cell. 2004; 17:107–115.

    Article  Google Scholar 

  72. Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA. Software for advanced HRV analysis. Comput Methods Programs Biomed. 2004; 76:73–81.

    Article  Google Scholar 

  73. Spitzer NC. Ion channels in development. Annu Rev Neurosci. 1979; 2:363–397.

    Article  Google Scholar 

  74. Viatchenko-Karpinski S, Fleischmann BK, Liu Q, Sauer H, Gryshchenko O, Ji GJ, et al. Intracellular Ca2+ oscillations drive spontaneous contractions in cardiomyocytes during early development. Proc Natl Acad Sci USA. 1999; 96:8259–8264.

    Article  Google Scholar 

  75. Rutenberg J, Cheng SM, Levin M. Early embryonic expression of ion channels and pumps in chick and Xenopus development. Dev Dyn. 2002; 225:469–484.

    Article  Google Scholar 

  76. Rangappa S, Entwistle JWC, Wechsler AS, Kresh JY. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thoracic Cardiov Surg. 2003; 126(1):124–132.

    Article  Google Scholar 

  77. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology. 1994; 12(7):689–693.

    Article  Google Scholar 

  78. Vacanti CA, Mikos AG. Letter from the editors. Tissue Eng. 1995; 1:1–2.

    Article  Google Scholar 

  79. Chai C, Leong KW. Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther. 2007; 15:467–480.

    Article  Google Scholar 

  80. Reppel M, Pillekamp F, Lu ZJ, Halbach M, Brockmeier K, Fleischmann BK, et al. Microelectrode arrays: a new tool to measure embryonic heart activity. J Electrocardiol. 2004; 37(Suppl):104–109.

    Article  Google Scholar 

  81. Reppel M, Pillekamp F, Brockmeier K, Matzkies M, Bekcioglu A, Lipke T, et al. The Electrocardiogram of human embryonic stem cell-derived cardiomyocytes. J Electrocardiol. 2005; 38:166–170.

    Article  Google Scholar 

  82. Maltsev VA, Wobus AM, Rohwedel J, Bader M, Hescheler J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res. 1994; 75:233–244.

    Article  Google Scholar 

  83. Kolossov E, Lu Z, Drobinskaya I, Gassanov N, Duan Y, Sauer H, et al. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. FASEB J. 2005; 19:577–579.

    Google Scholar 

  84. Gryshchenko O, Lu ZJ, Fleischmann BK, Hescheler J. Outwards currents in embryonic stem cell-derived cardiomyocytes. Pflugers Arch Eur J Physiol. 2000; 439:798–807.

    Article  Google Scholar 

  85. Kresh JY. Cell replacement therapy: the functional importance of myocardial architecture and intercellular gap-junction distribution. J Thorac Cardiovasc Surg. 2006; 131:1310–1313.

    Article  Google Scholar 

  86. Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med. 2004; 140:729–737.

    Google Scholar 

  87. Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science. 2008; 322(5907):1494–1497.

    Article  Google Scholar 

  88. Eschenhagen T, Zimmermann WH. Engineering myocardial tissue. Circ Res. 2005; 97:1220–1231.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a Synergy Grant from Drexel University (JYK, YW, and PIL), grants from the Nanotechnology Institute of Southeastern Pennsylvania (YW and PIL), NIH (No. DE09848 to YW), and a NASA Graduate Student Research Fellowship (NAG9-138 to PRB). We are indebted to Dr. J. Hescheler for the generous gift of the MLC-2v expressing mES cell line. We thank Gregory Botta and Diane Keene for careful reading of the manuscript and for their constructive criticisms. We gratefully acknowledge the contributions of the late Professor Alan G. MacDiarmid of University of Pennsylvania (2000 Nobel laureate in Chemistry), his enthusiastic support, and numerous discussions of this project, before he passed away on February 7, 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Lelkes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bidez, P.R., Kresh, J.Y., Wei, Y., Lelkes, P.I. (2011). Enhanced Cardiac Differentiation of Mouse Embryonic Stem Cells by Electrical Stimulation. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics