Skip to main content

Engineering the Stem Cell Niche and the Differentiative Micro- and Macroenvironment: Technologies and Tools for Applying Biochemical, Physical and Structural Stimuli and Their Effects on Stem Cells

  • Chapter
  • First Online:
Stem Cell Engineering

Abstract

In recent years there has been an explosion of interest in stem cell research, given their promising medical applications in cell-based tissue regeneration, drug testing and of course basic research. A decade of restless experimental and clinical research has demonstrated that the routine use of stem cells to repair solid organs is not at hand in spite of recent excessively enthusiastic announcements in the press and even serious scientific journals. Indeed, biologists only partially comprehend cell-differentiating mechanisms and have mapped only a few of the extrinsic and intrinsic factors involved. Even less is understood the complex qualitative, quantitative and temporal orchestration of these factors in the different steps featuring the whole differentiating process.

Most of the current research is centred on the identification of soluble ligands which regulate and control signalling pathways, and our knowledge on the role of the physical and structural microenvironment is still scarce. In this chapter, we focus only on cues which can be controlled externally using mechanical and structural parameters, and so can be easily defined using appropriate engineering and design. Firstly, the influence of the single parameters on cell behaviour is described, and then we discuss how technological tools such as biomaterials, scaffolds and bioreactors, as well as well-constructed and defined multiscale classification models can be best employed to engineer artificial biomimetic in vitro systems.

“Da mihi ubi consistam,…et terram caelumque movebo”

Give me where to stand… and I will move the earth

(Archimedes, 287 b.c.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ho A. Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol. 2005; 33(1):1–8.

    Article  Google Scholar 

  2. Schiffmann Y. Symmetry breaking and convergent extension in early chordate development. Prog Biophys Mol Biol. 2006; 92:209–231.

    Article  Google Scholar 

  3. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC. Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol. 2005; 39:363–376.

    Article  Google Scholar 

  4. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006; 441:1080.

    Article  Google Scholar 

  5. Segers VFM, Lee RT. Stem cell therapy for cardiac disease. Nature. 2008; 451:937.

    Article  Google Scholar 

  6. Ho AD, Wagner W, Mahlknecht U. Stem cells and ageing: the potential of stem cells to overcome age-related deteriorations of the body in regenerative medicine. EMBO Rep. 2005; 6:s36–s38.

    Article  Google Scholar 

  7. Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev. 2006; 27(2):208–219.

    Article  Google Scholar 

  8. Kurata H, Guillot PV, Chan J, Nicholas M. Osterix induces osteogenic gene expression but not differentiation in primary human fetal mesenchymal stem cells. Tissue Eng. 2007; 13(7):1512–1523.

    Article  Google Scholar 

  9. Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol. 2006; 44(4):215–230.

    Google Scholar 

  10. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999 Mar; 103(5):697–705.

    Article  Google Scholar 

  11. Jackson KA, Majka SA, Wang H, Pocius J, Craig JH, Majesky MW, Entman ML, Michael LK, Hirschi KK, Goodell MA. Regeneration of ischaemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001; 107:1395–1402.

    Article  Google Scholar 

  12. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarction. Nature. 2004; 428:664–673.

    Article  Google Scholar 

  13. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak Shinji J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia. 2004; 18:29–40.

    Article  Google Scholar 

  14. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA. 2005; 102:3766–3771.

    Article  Google Scholar 

  15. Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc Res. 2008; 78:413–421.

    Article  Google Scholar 

  16. Tian XF, Heng BC, Ge Z, Lu K, Rufaihah AJ, Fan VT, Yeo JF, Cao T. Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems. Scand J Clin Lab Invest. 2008; 68(1):58–67.

    Article  Google Scholar 

  17. Park J, Setter V, Wixler V, Schneider H. Umbilical cord blood stem cells: induction of differentiation into mesenchymal lineages by cell–cell contacts with various mesenchymal Cells. Tissue Eng Part A. 2008 15(2):397–406.

    Article  Google Scholar 

  18. Ho AD, Wagner W. The beauty of asymmetry: asymmetric divisions and self-renewal in the haematopoietic system. Curr Opin Hematol. 2007; 14(4):330.

    Article  Google Scholar 

  19. Mazzei D, Vozzi F, Cisternino A, Vozzi G, Ahluwalia A. A high-throughput bioreactor system for simulating physiological environments. IEEE Trans Ind Electron. 2008; 55:9.

    Article  Google Scholar 

  20. McBride SH, Knothe Tate ML. Modulation of stem cell shape and fate A: the role of density and seeding protocol on nucleus shape and gene expression. Tissue Eng Part A. 2008 Sep; 14(9):1561–1572.

    Article  Google Scholar 

  21. Bianchi F, Vozzi G, Pescia C, Domenici C, Ahluwalia A. A comparative study of chemical derivatisation methods for spatially differentiated cell adhesion on 2-dimensional microfabricated polymeric matrices. J Biomater Sci Polymer Edn. 2003; 14:1077–1096.

    Article  Google Scholar 

  22. Liu X, Lim JY, Donahue HJ, Dhurjati R, Mastro AM, Vogler EM. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: phenotypic and genotypic responses observed in vitro. Biomaterials. 2007; 28:4535–4550.

    Article  Google Scholar 

  23. Csete M. Oxygen in the cultivation of stem cells. Ann NY Acad Sci. 2005; 1049:1–8.

    Article  Google Scholar 

  24. Studet L, Csete M, Lee SH. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000; 20:7377–7383.

    Google Scholar 

  25. Moussavi-Harami F, Duwayri Y, Martin JA, Moussavi-Harami F, Buckwalter JA. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. Iowa Orthop J. 2004; 24:p15–p20.

    Google Scholar 

  26. Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006 May; 207(2):331–339.

    Article  Google Scholar 

  27. Fink T, Abildtrup L, Fogd K, Abdallah BM, Kassem M, Ebbesen P, Zachara V. Induction of adipocyte-like phenotype in human mesenchymal stem cells by hypoxia. Stem Cells. 2004; 22:1346–1355.

    Article  Google Scholar 

  28. Csete M, Walkikonis J, Slawany N, et al. Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol. 2001; 189:189–196.

    Article  Google Scholar 

  29. Lennon DP, Edminson JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001; 187:345–355.

    Article  Google Scholar 

  30. Stolzing A, Sethe S, Scutt A. Stressed stem cells: temperature response in aged mesenchymal stem cells. Stem Cells Dev. 2006; 15:478–487.

    Article  Google Scholar 

  31. Stolzing A, Scutt A. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic Biol Med. 2006; 41:326–338.

    Article  Google Scholar 

  32. Webb K, Haldy V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res. 2000; 49:362.

    Article  Google Scholar 

  33. Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006 Sep; 27(27):4783–4793.

    Article  Google Scholar 

  34. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA. 2004 Dec 28; 101(52):18129–18134.

    Article  Google Scholar 

  35. Sauer H, Rahimi G, Hescheler J, Wartenberg M. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem. 1999 Dec 15; 75(4):710–723.

    Article  Google Scholar 

  36. Sauer H, Bekhite MM, Hescheler J, Wartenberg M. Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp Cell Res. 2005 Apr 1; 304(2):380–390.

    Article  Google Scholar 

  37. Abilez O, Benharash P, Miyamoto E, Gale A, Xu C, Zarins CK. P19 progenitor cells progress to organized contracting myocytes after chemical and electrical stimulation: implications for vascular tissue engineering. Endovasc Ther. 2006 June; 13(3):377–388.

    Article  Google Scholar 

  38. Serena E, Flaibani M, Carnio S, Boldrin L, Vitiello L, De Coppi P, Elvassore N. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol Res. 2008 Mar; 30(2):207–214.

    Article  Google Scholar 

  39. Genovese JA, Spadaccio C, Langer J, Habe J, Jackson J, Patel AN. Electrostimulation induces cardiomyocyte predifferentiation of fibroblasts. Biochem Biophys Res Commun. 2008 Jun 6; 370(3):450–455.

    Article  Google Scholar 

  40. Yamaguchi DT, Huang J, Ma D, Wang PK. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J Cell Physiol. 2002 Feb; 190(2):180–188.

    Article  Google Scholar 

  41. Van Den Heuvel R, Leppens H, Nêmethova G, Verschaeve L. Haematopoietic cell proliferation in murine bone marrow cells exposed to extreme low frequency (ELF) electromagnetic fields. Toxicol In Vitro. 2001 Aug–Oct; 15(4–5):351–355.

    Article  Google Scholar 

  42. Czyz J, Nikolova T, Schuderer J, Kuster N, Wobus AM. Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells—the role of tumour suppressor p53. Mutat Res. 2004 Jan 10; 557(1):63–74.

    Article  Google Scholar 

  43. Ebisawa K, Hata K, Okada K, Kimata K, Ueda M, Torii S, Watanabe H. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng. 2004 May–Jun; 10(5–6):921–929.

    Article  Google Scholar 

  44. Cui JH, Park SR, Park K, Choi BH, Min BH. Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng. 2007 Feb; 13(2):351–360.

    Article  Google Scholar 

  45. Baharvand H, Hashemi SM, Ashtiani SM, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006; 50:645–652.

    Article  Google Scholar 

  46. Brännvall K, Bergman K, Wallenquist U, Svahn S, Bowden T, Hilborn J, Forsberg-Nilsson K. Enhanced neuronal differentiation in a three-dimensional collagen–hyaluronan matrix. J Neurosci Res. 2007 Aug 1; 85(10):2138–2146.

    Article  Google Scholar 

  47. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. PNAS. 2003; 100:12741–12746.

    Article  Google Scholar 

  48. Liu H, Roy K. Biomimetic three-dimensional cultures significantly increase hematopoietic differentiation efficacy of embryonic stem cells. Tissue Eng. 2005 Jan; 11(1–2):319–330.

    Article  Google Scholar 

  49. Liu H, Lin J, Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials. 2006; 27:5978–5989.

    Article  Google Scholar 

  50. Engler AJ, Sen S, Sweeney HL, Disher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126:677–689.

    Article  Google Scholar 

  51. Saha K, Pollock JF, Schaffer DV, Healy KE. Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol. 2007; 11:381–387.

    Article  Google Scholar 

  52. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev. 2008; 60:199–214.

    Article  Google Scholar 

  53. Burdick JA, Vunjak-Novakovic G. Review: engineered microenvironments for controlled stem cell differentiation. Tissue Eng A. 2008; 14:1809–1820.

    Article  Google Scholar 

  54. Forte G, Carotenuto F, Pagliari F, Pagliari S, Cossa P, Fiaccavento R, Ahluwalia A, Vozzi G, Vinci B, Serafino A, Rinaldi A, Traversa E, Carosella L, Minieri M, Di Nardo P. Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination. Stem Cells. 2008 May; 26(8):2093–2103.

    Article  Google Scholar 

  55. Mariani M, Rosatini F, Vozzi G, Previti A, Ahluwalia A. Characterisation of tissue engineering scaffolds microfabricated with PAM. Tissue Eng. 2006; 12(3):547–558.

    Article  Google Scholar 

  56. Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol. 2005; 25:1817–1823.

    Article  Google Scholar 

  57. Metallo CM, Vodyanik MA, de Pablo JJ, Slukvin II, Palecek SP. The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng. 2008 July 1; 100(4):830–837.

    Article  Google Scholar 

  58. Wu CC, Chao YC, Chen CN, Chien S, Chen YC, Chien CC, Chiu JJ, Linju Yen B. Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J Biomech. 2008; 41(4):813–821.

    Article  Google Scholar 

  59. Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, García-Cardeñ G, Daley GQ. Biomechanical forces promote embryonic haematopoiesis. Nature. 2009; doi:10.1038/nature08073.

    Google Scholar 

  60. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng. 2005 Jan–Feb; 11(1–2):1–18.

    Article  Google Scholar 

  61. Godara P, McFarland CD, Nordon RE. Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Technol Biotechnol. 2008; 83:408–420.

    Article  Google Scholar 

  62. Evans DJW, Lawford PV, Gunn J, et al. The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philos Trans R Soc A. 2008; 366:3343–3360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Ahluwalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Nardo, P., Minieri, M., Ahluwalia, A. (2011). Engineering the Stem Cell Niche and the Differentiative Micro- and Macroenvironment: Technologies and Tools for Applying Biochemical, Physical and Structural Stimuli and Their Effects on Stem Cells. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics