Skip to main content

Stem Cells in Tissue Engineering and Cell Therapies of Urological Defects

  • Chapter
  • First Online:
Stem Cell Engineering

Abstract

Objectives: This chapter focuses on advances in regenerative therapies using stem cells in urology. Different stem cell types will be introduced due to their classification and hierarchic order.

Methods: A detailed literature search has been performed using the PubMed database of the National Center of Biotechnology Information (NCBI). Publications of experimental investigations and in vivo trials using stem cells in reconstructive urology have been summarized and critically reviewed.

Results: Tissue engineering and autologous cell therapy techniques have been developed in order to generate prostheses for different urologic tissues and organ systems. During the last decade increasing numbers of studies have described stem cells in the context of therapeutic tools. The ability of adult and embryonic stem cells as well as progenitors to improve bladder wall architecture, to improve renal tubule formation or to promote restoration of spermatogenesis or recovery of continence has been investigated in a number of animal models. Another promising stem cell source, the so-called induced pluripotent stem cells, was recently generated, but not further investigated yet. Although results have been encouraging, to date, none of these stem cell-based therapies could reach clinical trials.

Conclusions: Review of the current literature has revealed several populations of adult stem cells and progenitor cells as useful cellular sources in the treatment and reconstruction of urologic organs. However, considerable basic research still needs to be performed to ensure the controlled differentiation and long-term fate of stem cells following transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach AD, Bannasch H, Galla TJ, Bittner KM, Stark GB. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng. 2001; 7:45–53.

    Article  Google Scholar 

  2. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999; 17:149–155.

    Article  Google Scholar 

  3. Fraser M, Thomas DF, Pitt E, Harnden P, Trejdosiewicz LK, Southgate J. A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int. 2004; 93:609–616.

    Article  Google Scholar 

  4. Matsunuma H, Kagami H, Narita Y, Hata K, Ono Y, Ohshima S, Ueda M. Constructing a tissue-engineered ureter using a decellularized matrix with cultured uroepithelial cells and bone marrow-derived mononuclear cells. Tissue Eng. 2006; 12:509–518.

    Article  Google Scholar 

  5. Humes HD, MacKay SM, Funke AJ, Buffington DA. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 1999; 55:2502–2514.

    Article  Google Scholar 

  6. Kershen RT, Yoo JJ, Moreland RB, Krane RJ, Atala A. Reconstitution of human corpus cavernosum smooth muscle in vitro and in vivo. Tissue Eng. 2002; 8:515–524.

    Article  Google Scholar 

  7. De Filippo RE, Yoo JJ, Atala A. Engineering of vaginal tissue in vivo. Tissue Eng. 2003; 9:301–306.

    Article  Google Scholar 

  8. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367:1241–1246.

    Article  Google Scholar 

  9. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science 2000; 287:1427–1430.

    Article  Google Scholar 

  10. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105:829–841.

    Article  Google Scholar 

  11. Shostak S. (Re)defining stem cells. Bioessays 2006; 28:301–308.

    Article  Google Scholar 

  12. Monk M. A stem-line model for cellular and chromosomal differentiation in early mouse-development. Differentiation 1981; 19:71–76.

    Article  Google Scholar 

  13. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–156.

    Article  Google Scholar 

  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–1147.

    Article  Google Scholar 

  15. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA. 1998; 95:13726–13731.

    Article  Google Scholar 

  16. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129:2773–2783.

    Google Scholar 

  17. Conrad C, Huss R. Adult stem cell lines in regenerative medicine and reconstructive surgery. J Surg Res. 2005; 124:201–208.

    Article  Google Scholar 

  18. Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002; 99:488–498.

    Article  Google Scholar 

  19. Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci. 2001; 938:231–233, discussion 233–235.

    Article  Google Scholar 

  20. Gritti A, Vescovi AL, Galli R. Adult neural stem cells: plasticity and developmental potential. J Physiol Paris 2002; 96:81–90.

    Article  Google Scholar 

  21. Young HE, Black AC Jr.. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004; 276:75–102.

    Article  Google Scholar 

  22. Semb H. Human embryonic stem cells: origin, properties and applications. Apmis 2005; 113:743–750.

    Article  Google Scholar 

  23. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418:50–56.

    Article  Google Scholar 

  24. Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE, Kamp TJ. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol. 2006; 40:195–200.

    Article  Google Scholar 

  25. Lakshmipathy U, Verfaillie C. Stem cell plasticity. Blood Rev. 2005; 19:29–38.

    Article  Google Scholar 

  26. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284:1168–1170.

    Article  Google Scholar 

  27. Khurana S, Mukhopadhyay A. In vitro transdifferentiation of adult hematopoietic stem cells: an alternative source of engraftable hepatocytes. J Hepatol. 2008; 49:998–1007.

    Article  Google Scholar 

  28. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283:534–537.

    Article  Google Scholar 

  29. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999; 96:10711–10716.

    Article  Google Scholar 

  30. Lian G, Wang C, Teng C, Zhang C, Du L, Zhong Q, Miao C, Ding M, Deng H. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro. Exp Hematol. 2006; 34:348–358.

    Article  Google Scholar 

  31. Liu Y, Rao MS. Transdifferentiation – fact or artifact. J Cell Biochem. 2003; 88:29–40.

    Article  Google Scholar 

  32. Wells WA. Is transdifferentiation in trouble? J Cell Biol. 2002; 157:15–18.

    Article  Google Scholar 

  33. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416:542–545.

    Article  Google Scholar 

  34. Quesenberry PJ, Abedi M, Aliotta J, Colvin G, Demers D, Dooner M, Greer D, Hebert H, Menon MK, Pimentel J, et al. Stem cell plasticity: an overview. Blood Cells Mol Dis. 2004; 32:1–4.

    Article  Google Scholar 

  35. Serakinci N, Keith WN. Therapeutic potential of adult stem cells. Eur J Cancer 2006; 42:1243–1246.

    Article  Google Scholar 

  36. Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961; 14:213–222.

    Article  Google Scholar 

  37. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143–147.

    Article  Google Scholar 

  38. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364:141–148.

    Article  Google Scholar 

  39. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E,Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001; 344:385–386.

    Article  Google Scholar 

  40. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360:427–435.

    Article  Google Scholar 

  41. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000; 18:307–316.

    Google Scholar 

  42. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.

    Article  Google Scholar 

  43. Welstead GG, Brambrink T, Jaenisch R. Generating iPS Cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp. 2008; 14:734–737.

    Google Scholar 

  44. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008; 26:1269–1275.

    Article  Google Scholar 

  45. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 2008; 454:646–650.

    Article  Google Scholar 

  46. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.

    Article  Google Scholar 

  47. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26:101–106.

    Article  Google Scholar 

  48. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001; 7:211–228.

    Article  Google Scholar 

  49. Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996; 85:331–343.

    Article  Google Scholar 

  50. Becker C, Laeufer T, Arikkat J, Jakse G. TGFbeta-1 and epithelial-mesenchymal interactions promote smooth muscle gene expression in bone marrow stromal cells: possible application in therapies for urological defects. Int J Artif Organs 2008; 31:951–959.

    Google Scholar 

  51. DiSandro MJ, Li Y, Baskin LS, Hayward S, Cunha G. Mesenchymal-epithelial interactions in bladder smooth muscle development: epithelial specificity. J Urol. 1998; 160:1040–1046, discussion 1079.

    Article  Google Scholar 

  52. Bronner-Fraser M, Fraser SE. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 1988; 335:161–164.

    Article  Google Scholar 

  53. Oottamasathien S, Wang Y, Williams K, Franco OE, Wills ML, Thomas JC, Saba K, Sharif-Afshar AR, Makari JH, Bhowmick NA, et al. Directed differentiation of embryonic stem cells into bladder tissue. Dev Biol. 2007; 304:556–566.

    Article  Google Scholar 

  54. Anumanthan G, Makari JH, Honea L, Thomas JC, Wills ML, Bhowmick NA, Adams MC, Hayward SW, Matusik RJ, Brock JW III, et al. Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J Urol. 2008; 180:1778–1783.

    Article  Google Scholar 

  55. Chung SY, Krivorov NP, Rausei V, Thomas L, Frantzen M, Landsittel D, Kang YM, Chon CH, Ng CS, Fuchs GJ. Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol. 2005; 174:353–359.

    Article  Google Scholar 

  56. Shukla D, Box GN, Edwards RA, Tyson DR. Bone marrow stem cells for urologic tissue engineering. World J Urol. 2008; 26:341–349.

    Article  Google Scholar 

  57. Lin F, Igarashi P. Searching for stem/progenitor cells in the adult mouse kidney. J Am Soc Nephrol. 2003; 14:3290–3292.

    Article  Google Scholar 

  58. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001; 195:229–235.

    Article  Google Scholar 

  59. Chen J, Park HC, Addabbo F, Ni J, Pelger E, Li H, Plotkin M, Goligorsky MS. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 2008; 74:879–889.

    Article  Google Scholar 

  60. Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999; 17:451–455.

    Article  Google Scholar 

  61. Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, Hofmeister E, Schuch G, Soker S, Moraes CT, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002; 20:689–696.

    Article  Google Scholar 

  62. Minuth WW, Sorokin L, Schumacher K. Generation of renal tubules at the interface of an artificial interstitium. Cell Physiol Biochem. 2004; 14:387–394.

    Article  Google Scholar 

  63. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA. 1994; 91:11303–11307.

    Article  Google Scholar 

  64. Lo KC, Lei Z, Rao ChV, Beck J, Lamb DJ. De novo testosterone production in luteinizing hormone receptor knockout mice after transplantation of leydig stem cells. Endocrinology 2004; 145:4011–4015.

    Article  Google Scholar 

  65. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA. 2003; 100:11457–11462.

    Article  Google Scholar 

  66. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427:148–154.

    Article  Google Scholar 

  67. Furuta A, Carr LK, Yoshimura N, Chancellor MB. Advances in the understanding of sress urinary incontinence and the promise of stem-cell therapy. Rev Urol. 2007; 9:106–112.

    Google Scholar 

  68. Cannon TW, Lee JY, Somogyi G, Pruchnic R, Smith CP, Huard J, Chancellor MB. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology. 2003; 62:958–963.

    Article  Google Scholar 

  69. Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells 2005; 23:1242–1250.

    Article  Google Scholar 

  70. Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003; 34:461–475.

    Article  Google Scholar 

  71. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006; 174:249–282.

    Google Scholar 

  72. Shibata D, Tavare S. Counting divisions in a human somatic cell tree: how, what and why? Cell Cycle 2006; 5:610–614.

    Article  Google Scholar 

  73. Diamond DA, Caldamone AA. Endoscopic correction of vesicoureteral reflux in children using autologous chondrocytes: preliminary results. J Urol. 1999; 162:1185–1188.

    Article  Google Scholar 

  74. Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 2004; 25:5743–5751.

    Article  Google Scholar 

  75. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005; 19:1129–1155.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Gary Brook for linguistic revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, C., Montzka, K., Jakse, G. (2011). Stem Cells in Tissue Engineering and Cell Therapies of Urological Defects. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics