Skip to main content

Skeletal Stem Cells and Controlled Nanotopography

  • Chapter
  • First Online:
Stem Cell Engineering

Abstract

Cells respond strongly to the shape of their environment and this is called contact guidence. For many years this has been studies at the microscale and with terminally differentiated cell types. With developments in materials technology studies at the nanoscale are now possible. Hand-in hand with these advances are developments in stem cell culture. This review looks at the adult stem cell/nanoscale interface considering cell adhesion, motility, gene expression (mechanotransduction) and ultimately differentiation. Particularly of interest is the reorganisation of the interface nucleus and possible links to differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, et al. Electron beam lithography: resolution limits and applications. Appl Surf Sci. 2000; 164:111–117.

    Article  Google Scholar 

  2. Wilkinson CD. Making structures for cell engineering. Eur Cell Mater. 2004 Oct; 22(8): 21–26.

    Google Scholar 

  3. Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG. The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng. 2002; 19:263–269.

    Article  Google Scholar 

  4. Andersson AS, Backhed F, von Euler A, Richter-Dahlfors A, Sutherland D, Kasemo B. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials. 2003 Sep; 24(20):3427–3436.

    Article  Google Scholar 

  5. Andersson AS, Brink J, Lidberg U, Sutherland DS. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans Nanobiosci. 2003; 2(2):49–57.

    Article  Google Scholar 

  6. Andersson AS, Olsson P, Lidberg U, Sutherland D. The effects of continuous and discontinuous groove edges on cell shape and alignment. Exp Cell Res. 2003 Aug 1; 288(1):177–188.

    Article  Google Scholar 

  7. Denis FA, Hanarp P, Sutherland DS, Dufrene YF. Fabrication of nanostructured polymer surfaces using colloidal lithography and spin coating. Nanoletters. 2002; 2:1419–1425.

    Article  Google Scholar 

  8. Denis FA, Hanarp P, Sutherland DS, Gold J, Mustin C, Rouxhet PG, et al. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir. 2002; 18(3):819–828.

    Article  Google Scholar 

  9. Affrossman S, Henn G, O’Neill SA, Pethrick RA, Stamm M. Surface topography and composition of deuterated polystyrene – poly(bromostyrene) blends. Macromolecules. 1996; 29(14):5010–5016.

    Article  Google Scholar 

  10. Affrossman S, Jerome R, O’Neill SA, Schmitt T, Stamm M. Surface structure of thin film blends of polystyrene and poly(n-butyl methacrylate). Colloid Polym Sci. 2000; 278:993–999.

    Article  Google Scholar 

  11. Affrossman S, O’Neill SA, Stamm M. Topography and surface composition of thin films of blends of polystyrene with brominated polystyrenes: effects of varying the degree of bromination and annealing. Macromolecules. 1998; 31:6280–6288.

    Article  Google Scholar 

  12. Affrossman S, Stamm M. The effect of molecular weight on the topography of thin films of blends of poly(4-bromostyrene) and polystyrene. Colloid Polym Sci. 2000; 278:888–893.

    Article  Google Scholar 

  13. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001; 19(3):180–192.

    Article  Google Scholar 

  14. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001; 414:118–121.

    Article  Google Scholar 

  15. Oreffo ROC. Growth factors for skeletal reconstruction and fracture repair. Curr Opin Investig Drugs. 2004; 5(4):419–423.

    Google Scholar 

  16. Tare RS, Babister JC, Kanczler J, Oreffo RO. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol. 2008 Jun 25; 288(1–2):11–21.

    Article  Google Scholar 

  17. Dawson JI, Oreffo RO. Bridging the regeneration gap: stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys. 2008 May 15; 473(2):124–131.

    Article  Google Scholar 

  18. Yang X, Tare RS, Partridge KA, Roach HI, Clarke NM, Howdle SM, et al. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res. 2003 Jan; 18(1):47–57.

    Article  Google Scholar 

  19. Rose FR, Oreffo RO. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002 Apr 22; 292(1):1–7.

    Article  Google Scholar 

  20. Triffitt JT, Oreffo RO. Osteoblast lineage. In: Zaidi M, ed. Advances in organ biology: molecular and cellular biology of bone. Stamford: JAI Press; 1998, pp. 475–498.

    Chapter  Google Scholar 

  21. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol. 1976; 47:327–359.

    Article  Google Scholar 

  22. Mirmalek-Sani SH, Roach HI, Wilson DI, Hanley NA, Oreffo ROC. Characterisation of human fetal populations: a comparative model for skeletal and stem cell differentiation. J Bone Miner Res. 2005; 20:1292.

    Google Scholar 

  23. Locklin RM, Oreffo RO, Triffitt JT. Modulation of osteogenic differentiation in human skeletal cells in vitro by 5-azacytidine. Cell Biol Int. 1998; 22(3):207–215.

    Article  Google Scholar 

  24. Oreffo RO, Bord S, Triffitt JT. Skeletal progenitor cells and ageing human populations. Clin Sci (Lond). 1998 Jun; 94(5):549–555.

    Google Scholar 

  25. Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone. 1999 Aug; 25(2 Suppl):5S–9S.

    Article  Google Scholar 

  26. Gustafson T, Wolpert L. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae. Exp Cell Res. 1961 Jun; 24:64–79.

    Article  Google Scholar 

  27. Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD. Cell guidance by ultrafine topography in vitro. J Cell Sci. 1991 May; 99(Pt 1):73–77.

    Google Scholar 

  28. Wojciak-Stothard B, Madeja Z, Korohoda W, Curtis A, Wilkinson C. Activation of macrophage-like cells by multiple grooved substrata – topographical control of cell behavior. Cell Biol Int. 1995; 19:485–490.

    Article  Google Scholar 

  29. Rajnicek A, McCaig C. Guidance of CNS growth cones by substratum grooves and ridges: effects of inhibitors of the cytoskeleton, calcium channels and signal transduction pathways. J Cell Sci. 1997 Dec; 110 (Pt 23):2915–2924.

    Google Scholar 

  30. Rajnicek A, Britland S, McCaig C. Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci. 1997 Dec; 110 (Pt 23):2905–2913.

    Google Scholar 

  31. Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int. 2004; 28(3):229–236.

    Article  Google Scholar 

  32. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000 Nov 25; 261(1):1–12.

    Article  Google Scholar 

  33. Jones GE, Allen WE, Ridley AJ. The Rho GTPases in macrophage motility and chemotaxis. Cell Adhes Commun. 1998; 6(2–3):237–245.

    Article  Google Scholar 

  34. Hart A, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J Mater Sci Mater Med. 2007 Jun; 18(6):1211–1218. Epub 2007 Feb 3.

    Google Scholar 

  35. Dalby MJ, McCloy D, Robertson M, Agheli H, Sutherland D, Affrossman S, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials. 2006 May; 27(15):2980–2987.

    Article  Google Scholar 

  36. Dalby MJ. Cellular response to low adhesion nanotopographies. Int J Nanomed. 2007; 2(3):373–381.

    Google Scholar 

  37. Gallagher JO, McGhee KF, Wilkinson CDW, Riehle MO. Interaction of animal cells with ordered nanotopography. IEEE Trans Nanobiosci. 2002; 1(1):24–28.

    Article  Google Scholar 

  38. Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CD, Curtis AS. Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int J Biochem Cell Biol. 2004 Oct; 36(10):2015–2025.

    Article  Google Scholar 

  39. Dalby MJ, Biggs MJP, Gadegaard N, Kalna G, Wilkinson CDW, Curtis ASG. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem. 2007; 100(2):326–338.

    Article  Google Scholar 

  40. Biggs MJ, Richards RG, Gadegaard N, McMurray RJ, Affrossman S, Wilkinson CD, et al. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A. 2008 Sep 23; 91(1):195–208.

    Google Scholar 

  41. Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Dalby MJ. Regulation of implant surface cell adhesion: Characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J Orthop Res. 2007 Feb; 25(2):273–282.

    Google Scholar 

  42. Alberts B, Bray D, Lewis J, Raff M, Watson J. Molecular biology of the cell. New York: Garland; 1994.

    Google Scholar 

  43. Cooper GM. Cell. Sunderland: Sinauer Associates; 2000.

    Google Scholar 

  44. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996; 12:463–518.

    Article  Google Scholar 

  45. Amos LA, Amos WB. Molecules of the cytoskeleton. London: MacMillan; 1991.

    Google Scholar 

  46. Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials. 2002 Jul; 23(14):2945–2954.

    Article  Google Scholar 

  47. Dalby MJ, Childs S, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials. 2003 Mar; 24(6):927–935.

    Article  Google Scholar 

  48. Dalby MJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Polymer-demixed nanotopography: control of fibroblast spreading and proliferation. Tissue Eng. 2002 Dec; 8(6):1099–1108.

    Article  Google Scholar 

  49. Dalby MJ, McCloy D, Robertson M, Wilkinson CDW, Oreffo ROC. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials. 2006; 27:1306–1315.

    Article  Google Scholar 

  50. Wang N, Suo Z. Long-distance propagation of forces in a cell. Biochem Biophys Res Commun. 2005 Mar 25; 328(4):1133–1138.

    Article  Google Scholar 

  51. Forgacs G. On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci. 1995 Jun; 108 (Pt 6):2131–2143.

    Google Scholar 

  52. Ingber DE, Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003 Apr 15; 116(Pt 8):1397–1408.

    Article  Google Scholar 

  53. Ingber DE, Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003 Apr 1; 116(Pt 7):1157–1173.

    Article  Google Scholar 

  54. Ingber DE. Mechanosensation through integrins: cells act locally but think globally. Proc Natl Acad Sci USA. 2003 Feb 18; 100(4):1472–1474.

    Article  Google Scholar 

  55. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA. 1997 Feb 4; 94(3):849–854.

    Article  Google Scholar 

  56. Maniotis AJ, Bojanowski K, Ingber DE. Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells. J Cell Biochem. 1997 Apr; 65(1):114–130.

    Article  Google Scholar 

  57. Ingber DE. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993 Mar; 104 (Pt 3):613–627.

    Google Scholar 

  58. Charras GT, Horton MA. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J. 2002 Jun; 82(6):2970–2981.

    Article  Google Scholar 

  59. Dalby MJ. Topographically induced direct cell mechanotransduction. Med Eng Phys. 2005; 27(9):730–742.

    Article  Google Scholar 

  60. Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Use of nanotopography to study mechanotransduction in fibroblasts–methods and perspectives. Eur J Cell Biol. 2004 May; 83(4):159–169.

    Article  Google Scholar 

  61. Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 2000 May; 12(5):617–636.

    Google Scholar 

  62. Heslop-Harrison JS, Leitch AR, Schwarzacher T. The physical organisation of interphase nuclei. In: Heslop-Harrison JS, Flavell RB, eds. The chromosome. Oxford: Bios; 1993, pp. 221–232.

    Google Scholar 

  63. Mosgoller W, Leitch AR, Brown JK, Heslop-Harrison JS. Chromosome arrangements in human fibroblasts at mitosis. Hum Genet. 1991 Nov; 88(1):27–33.

    Article  Google Scholar 

  64. Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma. 2005 Sep; 114(4):212–229.

    Article  Google Scholar 

  65. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001 Apr; 2(4):292–301.

    Article  Google Scholar 

  66. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004 Oct; 36(10):1065–1071.

    Article  Google Scholar 

  67. Bustamante C, Bryant Z, Smith SB. Ten years of tension: single-molecule DNA mechanics. Nature. 2003 Jan 23; 421(6921):423–427.

    Article  Google Scholar 

  68. Dalby MJ, Gadegaard N, Herzyk P, Sutheraland DS, Agheli H, Wilkinson CDW, et al. Nanomechanotransduction and interphase nuclear organisation influence on genomic control. J Cell Biochem. 2007; 102:1234–1244.

    Article  Google Scholar 

  69. Curtis ASG, Dalby MJ, Gadegaard N. Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine. 2006; 1(1):67–72.

    Article  Google Scholar 

  70. Curtis ASG, Dalby MJ, Gadegaard N. Nanoimprinting onto cells. J R Soc Interface. 2006; 3:393–398.

    Article  Google Scholar 

  71. Dalby MJ, Berry CC, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res. 2004 May 1; 295(2):387–394.

    Article  Google Scholar 

  72. Wood MA, Bagnaninchi P, Dalby MJ. The beta integrins and cytoskeletal nanoimprinting. Exp Cell Res. 2008 Feb 15; 314(4):927–935.

    Article  Google Scholar 

  73. Balasundaram G, Webster TJ. Nanotechnology and biomaterials for orthopaedic medical applications. Nanomedicine. 2006; 1(2):169–176.

    Article  Google Scholar 

  74. Biggs MJ, Richards RG, McFarlane S, Wilkinson CD, Oreffo RO, Dalby MJ. Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves. J R Soc Interface. 2008 Mar; 5(27):1231–1242.

    Article  Google Scholar 

  75. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007 Dec; 6(12):997–1003.

    Article  Google Scholar 

  76. Getzenberg RH. Nuclear matrix and the regulation of gene expression: tissue specificity. J Cell Biochem. 1994 May; 55(1):22–31.

    Article  Google Scholar 

  77. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006 Aug 25; 126(4):677–689.

    Article  Google Scholar 

  78. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004 Apr; 6(4):483–495.

    Article  Google Scholar 

  79. Shafrir Y, Forgacs G. Mechanotransduction through the cytoskeleton. Am J Physiol Cell Physiol. 2002 Mar; 282(3):C479–C486.

    Google Scholar 

Download references

Acknowledgements

Matthew Dalby is supported by awards from the BBSRC. Richard Oreffo is supported by awards from the BBSRC and EPSRC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalby, M.J., Oreffo, R.O. (2011). Skeletal Stem Cells and Controlled Nanotopography. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics