Advertisement

Imaging

  • Bernd KläeserEmail author
  • Jakub Wiskirchen
Chapter
  • 2.2k Downloads

Abstract

During the past 30 years, medical imaging underwent a tremendous development from planar radiography to cross-sectional imaging and multi-modality imaging. With regard to minimally invasive thoracic surgery, preoperative imaging plays an important role for planning of surgery based on detailed anatomical information and characterization of pathologies but also for adequate selection of patients that may benefit from minimally invasive surgery or surgery at all. Above all, integrated PET/CT has become an inherent part in the diagnostic work-up of patients with thoracic malignancies and has gained widespread acceptance a standard of care imaging technique for tumour staging.

Keywords

Positron Emission Tomography Malignant Pleural Mesothelioma Thymic Carcinoma Solitary Pulmonary Nodule Atypical Carcinoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ahmadzadehfar H, Palmedo H, Strunk H et al (2007) False positive 18F-FDG-PET/CT in a patient after talc pleurodesis. Lung Cancer 58:418–421PubMedCrossRefGoogle Scholar
  2. 2.
    Alberts WM (2007) Diagnosis and management of lung cancer executive summary: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:1S–19SPubMedCrossRefGoogle Scholar
  3. 3.
    Allen-Auerbach M, Yeom K, Park J et al (2006) Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 47:298–301PubMedGoogle Scholar
  4. 4.
    Alzahouri K, Lejeune C, Woronoff-Lemsi MC et al (2005) Cost-effectiveness analysis of strategies introducing FDG-PET into the mediastinal staging of non-small-cell lung cancer from the French healthcare system perspective. Clin Radiol 60:479–492PubMedCrossRefGoogle Scholar
  5. 5.
    Aquino SL, Halpern EF, Kuester LB et al (2007) FDG-PET and CT features of non-small cell lung cancer based on tumor type. Int J Mol Med 19:495–499PubMedGoogle Scholar
  6. 6.
    Azad A, Chionh F, Scott AM et al (2010) High impact of (18)F-FDG-PET on management and prognostic stratification of newly diagnosed small cell lung cancer. Mol Imaging Biol 12(4):443–451PubMedCrossRefGoogle Scholar
  7. 7.
    Balogova S, Huchet V, Kerrou K et al (2010) Detection of bronchioloalveolar cancer by means of PET/CT and 18F-fluorocholine, and comparison with 18F-fluorodeoxyglucose. Nucl Med Commun 31: 389–397PubMedGoogle Scholar
  8. 8.
    Beggs AD, Hain SF (2002) F-18 FDG-positron emission tomographic scanning and Wegener’s granulomatosis. Clin Nucl Med 27:705–706PubMedCrossRefGoogle Scholar
  9. 9.
    Beyer F, Buerke B, Gerss J et al (2010) Prediction of lymph node metastases in NSCLC. Three dimensional anatomical parameters do not substitute FDG-PET-CT. Nuklearmedizin 49:41–48; quiz N41PubMedGoogle Scholar
  10. 10.
    Brink I, Schumacher T, Mix M et al (2004) Impact of [18F]FDG-PET on the primary staging of small-cell lung cancer. Eur J Nucl Med Mol Imaging 31: 1614–1620PubMedCrossRefGoogle Scholar
  11. 11.
    Buccheri G, Ferrigno D (2000) Prognostic value of stage grouping and TNM descriptors in lung cancer. Chest 117:1247–1255PubMedCrossRefGoogle Scholar
  12. 12.
    Cerfolio RJ, Ojha B, Bryant AS et al (2004) The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsmall cell lung cancer. Ann Thorac Surg 78:1017–1023; ­discussion 1017–1023PubMedCrossRefGoogle Scholar
  13. 13.
    Chang JM, Lee HJ, Goo JM et al (2006) False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol 7:57–69PubMedCrossRefGoogle Scholar
  14. 14.
    Chong S, Lee KS (2007) Spectrum of findings and usefulness of integrated PET/CT in patients with known or suspected neuroendocrine tumors of the lung. Cancer Imaging 7:195–201PubMedCrossRefGoogle Scholar
  15. 15.
    Cohade C (2010) Altered biodistribution on FDG-PET with emphasis on brown fat and insulin effect. Semin Nucl Med 40:283–293PubMedCrossRefGoogle Scholar
  16. 16.
    Daisaki H, Shinohara H, Terauchi T et al (2010) Multi-bed-position acquisition technique for deep inspiration breath-hold PET/CT: a preliminary result for pulmonary lesions. Ann Nucl Med 24:179–188PubMedCrossRefGoogle Scholar
  17. 17.
    Daniels CE, Lowe VJ, Aubry MC et al (2007) The utility of fluorodeoxyglucose positron emission tomography in the evaluation of carcinoid tumors presenting as pulmonary nodules. Chest 131:255–260PubMedCrossRefGoogle Scholar
  18. 18.
    Divgi CR (2009) Molecular imaging of pulmonary cancer and inflammation. Proc Am Thorac Soc 6:464–468PubMedCrossRefGoogle Scholar
  19. 19.
    El-Bawab HY, Abouzied MM, Rafay MA et al (2010) Clinical use of combined positron emission tomography and computed tomography in thymoma recurrence. Interact Cardiovasc Thorac Surg 11(4):395–399PubMedCrossRefGoogle Scholar
  20. 20.
    Ferdinand B, Gupta P, Kramer EL (2004) Spectrum of thymic uptake at 18F-FDG PET. Radiographics 24:1611–1616PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer B, Lassen U, Mortensen J et al (2009) Preoperative staging of lung cancer with combined PET-CT. N Engl J Med 361:32–39PubMedCrossRefGoogle Scholar
  22. 22.
    Fischer BM, Mortensen J, Hojgaard L (2001) Positron emission tomography in the diagnosis and staging of lung cancer: a systematic, quantitative review. Lancet Oncol 2:659–666PubMedCrossRefGoogle Scholar
  23. 23.
    Gambhir SS, Hoh CK, Phelps ME et al (1996) Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. J Nucl Med 37:1428–1436PubMedGoogle Scholar
  24. 24.
    Garcia C, Bandaru V, Van Nostrand D et al (2010) Effective reduction of brown fat FDG uptake by controlling environmental temperature prior to PET scan: an expanded case series. Mol Imaging Biol 12(6): 652–656PubMedCrossRefGoogle Scholar
  25. 25.
    Gould MK, Maclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924PubMedCrossRefGoogle Scholar
  26. 26.
    Halley A, Hugentobler A, Icard P et al (2005) Efficiency of 18F-FDG and 99mTc-depreotide SPECT in the diagnosis of malignancy of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 32:1026–1032PubMedCrossRefGoogle Scholar
  27. 27.
    Halpern BS, Schiepers C, Weber WA et al (2005) Presurgical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography/CT, and software image fusion. Chest 128:2289–2297PubMedCrossRefGoogle Scholar
  28. 28.
    Heusner TA, Kuemmel S, Koeninger A et al (2010) Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging 37:1077–1086PubMedCrossRefGoogle Scholar
  29. 29.
    Hicks RJ, Kalff V, MacManus MP et al (2001) The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med 42:1605–1613PubMedGoogle Scholar
  30. 30.
    Hofman MS, Smeeton NC, Rankin SC et al (2009) Observer variation in FDG PET-CT for staging of non-small-cell lung carcinoma. Eur J Nucl Med Mol Imaging 36:194–199PubMedCrossRefGoogle Scholar
  31. 31.
    Hsu LH, Ko JS, You DL et al (2007) Transbronchial needle aspiration accurately diagnoses subcentimetre mediastinal and hilar lymph nodes detected by integrated positron emission tomography and computed tomography. Respirology 12:848–855PubMedCrossRefGoogle Scholar
  32. 32.
    Ito H, Shimada K, Isogami K et al (2006) Recurrent thymoma: radiological (CT and FDG-PET) and histological (WHO criteria) features. Radiat Med 24: 292–296PubMedCrossRefGoogle Scholar
  33. 33.
    Kamel EM, Zwahlen D, Wyss MT et al (2003) Whole-body (18)F-FDG PET improves the management of patients with small cell lung cancer. J Nucl Med 44: 1911–1917PubMedGoogle Scholar
  34. 34.
    Kanzaki R, Higashiyama M, Maeda J et al (2010) Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients. Interact Cardiovasc Thorac Surg 10:1009–1014PubMedCrossRefGoogle Scholar
  35. 35.
    Kayani I, Bomanji JB, Groves A et al (2008) Functional imaging of neuroendocrine tumors with combined PET/CT using 68 Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 112: 2447–2455PubMedCrossRefGoogle Scholar
  36. 36.
    Kee F, Erridge S, Bradbury I et al (2010) The value of positron emission tomography in patients with non-small cell lung cancer. Eur J Radiol 73(1):50–58PubMedCrossRefGoogle Scholar
  37. 37.
    Klaeser B, Mueller MD, Schmid RA et al (2009) PET-CT-guided interventions in the management of FDG-positive lesions in patients suffering from solid malignancies: initial experiences. Eur Radiol 19:1780–1785PubMedCrossRefGoogle Scholar
  38. 38.
    Klaeser B, Wiskirchen J, Wartenberg J et al (2010) PET/CT-guided biopsies of metabolically active bone lesions: applications and clinical impact. Eur J Nucl Med Mol Imaging 37:2027–2036PubMedCrossRefGoogle Scholar
  39. 39.
    Kosuda S, Ichihara K, Watanabe M et al (2002) Decision-tree sensitivity analysis for cost-effectiveness of whole-body FDG PET in the management of patients with non-small-cell lung carcinoma in Japan. Ann Nucl Med 16:263–271PubMedCrossRefGoogle Scholar
  40. 40.
    Kruger S, Buck AK, Blumstein NM et al (2006) Use of integrated FDG PET/CT imaging in pulmonary carcinoid tumours. J Intern Med 260:545–550PubMedCrossRefGoogle Scholar
  41. 41.
    Kumar A, Jindal T, Dutta R et al (2009) Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan. Ann Nucl Med 23:745–751PubMedCrossRefGoogle Scholar
  42. 42.
    Kwek BH, Aquino SL, Fischman AJ (2004) Fluorodeoxyglucose positron emission tomography and CT after talc pleurodesis. Chest 125:2356–2360PubMedCrossRefGoogle Scholar
  43. 43.
    Lamprecht B, Porsch P, Pirich C et al (2009) Electromagnetic navigation bronchoscopy in combination with PET-CT and rapid on-site cytopathologic examination for diagnosis of peripheral lung lesions. Lung 187:55–59PubMedCrossRefGoogle Scholar
  44. 44.
    Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507PubMedCrossRefGoogle Scholar
  45. 45.
    Liu S, Cheng H, Yao S et al (2010) The clinical application value of PET/CT in adenocarcinoma with bronchioloalveolar carcinoma features. Ann Nucl Med 24:541–547PubMedCrossRefGoogle Scholar
  46. 46.
    Murray JG, Erasmus JJ, Bahtiarian EA et al (1997) Talc pleurodesis simulating pleural metastases on 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 168:359–360PubMedGoogle Scholar
  47. 47.
    Nagamachi S, Wakamatsu H, Kiyohara S et al (2010) The reproducibility of deep-inspiration breath-hold (18)F-FDG PET/CT technique in diagnosing various cancers affected by respiratory motion. Ann Nucl Med 24:171–178PubMedCrossRefGoogle Scholar
  48. 48.
    Nguyen NC, Tran I, Hueser CN et al (2009) F-18 FDG PET/CT characterization of talc pleurodesis-induced pleural changes over time: a retrospective study. Clin Nucl Med 34:886–890PubMedCrossRefGoogle Scholar
  49. 49.
    Nguyen VH, Peloquin S, Lacasse Y (2005) Cost-effectiveness of positron emission tomography for the management of potentially operable non-small cell lung cancer in Quebec. Can Respir J 12:19–25PubMedGoogle Scholar
  50. 50.
    Niho S, Fujii H, Murakami K et al (2007) Detection of unsuspected distant metastases and/or regional nodes by FDG-PET [corrected] scan in apparent limited-disease small-cell lung cancer. Lung Cancer 57:328–333PubMedCrossRefGoogle Scholar
  51. 51.
    Nosotti M, Castellani M, Longari V et al (2008) Staging non-small lung cancer with positron emission tomography: diagnostic value, impact on patient management, and cost-effectiveness. Int Surg 93:278–283PubMedGoogle Scholar
  52. 52.
    Ohno Y, Koyama H, Onishi Y et al (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment–utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248:643–654PubMedCrossRefGoogle Scholar
  53. 53.
    Orki A, Akin O, Tasci AE et al (2009) The role of positron emission tomography/computed tomography in the diagnosis of pleural diseases. Thorac Cardiovasc Surg 57:217–221PubMedCrossRefGoogle Scholar
  54. 54.
    Otsuka H, Terazawa K, Morita N et al (2009) Is FDG-PET/CT useful for managing malignant pleural mesothelioma? J Med Invest 56:16–20PubMedCrossRefGoogle Scholar
  55. 55.
    Plathow C, Aschoff P, Lichy MP et al (2008) Positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced nonsmall cell lung cancer – initial results. Invest Radiol 43:290–297PubMedCrossRefGoogle Scholar
  56. 56.
    Plathow C, Staab A, Schmaehl A et al (2008) Computed tomography, positron emission tomography, positron emission tomography/computed tomography, and magnetic resonance imaging for staging of limited pleural mesothelioma: initial results. Invest Radiol 43:737–744PubMedCrossRefGoogle Scholar
  57. 57.
    Prenzel KL, Monig SP, Sinning JM et al (2003) Lymph node size and metastatic infiltration in non-small cell lung cancer. Chest 123:463–467PubMedCrossRefGoogle Scholar
  58. 58.
    Prevost A, Papathanassiou D, Jovenin N et al (2009) Comparison between PET(−FDG) and computed tomography in the staging of lung cancer. Consequences for operability in 94 patients. Rev Pneumol Clin 65:341–349PubMedCrossRefGoogle Scholar
  59. 59.
    Reichert M, Bensadoun ES (2009) PET imaging in patients with coal workers pneumoconiosis and suspected malignancy. J Thorac Oncol 4:649–651PubMedCrossRefGoogle Scholar
  60. 60.
    Schaefer-Prokop C (2010) Conventional and CT diagnostics of bronchial carcinoma. Radiologe 50:675–683PubMedCrossRefGoogle Scholar
  61. 61.
    Schoellnast H, Larson SM, Nehmeh SA et al (2010) Radiofrequency ablation of non-small-cell carcinoma of the lung under real-time FDG PET CT guidance. Cardiovasc Intervent Radiol 34:S182–S185PubMedCrossRefGoogle Scholar
  62. 62.
    Seo JH, Lee SW, Ahn BC et al (2010) Pulmonary amyloidosis mimicking multiple metastatic lesions on F-18 FDG PET/CT. Lung Cancer 67:376–379PubMedCrossRefGoogle Scholar
  63. 63.
    Shen YY, Shiau YC, Wang JJ et al (2002) Whole-body 18F-2-deoxyglucose positron emission tomography in primary staging small cell lung cancer. Anticancer Res 22:1257–1264PubMedGoogle Scholar
  64. 64.
    Shim SS, Han J (2010) FDG-PET/CT imaging in assessing mucin-producing non-small cell lung cancer with pathologic correlation. Ann Nucl Med 24:357–362PubMedCrossRefGoogle Scholar
  65. 65.
    Shin V, Bhargava P, Brown J et al (2007) Multimodality imaging features in a case of bronchial carcinoid including FDG PET. Med Sci Monit 13:CS4–CS8PubMedGoogle Scholar
  66. 66.
    Sloka JS, Hollett PD, Mathews M (2004) Cost-effectiveness of positron emission tomography for non-small cell lung carcinoma in Canada. Med Sci Monit 10:MT73–MT80PubMedGoogle Scholar
  67. 67.
    Subedi N, Scarsbrook A, Darby M et al (2009) The clinical impact of integrated FDG PET-CT on management decisions in patients with lung cancer. Lung Cancer 64:301–307PubMedCrossRefGoogle Scholar
  68. 68.
    Sun JS, Park KJ, Sheen SS et al (2009) Clinical usefulness of the fluorodeoxyglucose (FDG)-PET maximal standardized uptake value (SUV) in combination with CT features for the differentiation of adenocarcinoma with a bronchioloalveolar carcinoma from other subtypes of non-small cell lung cancers. Lung Cancer 66:205–210PubMedCrossRefGoogle Scholar
  69. 69.
    Takenaka D, Ohno Y, Matsumoto K et al (2009) Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging (DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy. J Magn Reson Imaging 30: 298–308PubMedCrossRefGoogle Scholar
  70. 70.
    Tasci E, Tezel C, Orki A et al (2010) The role of integrated positron emission tomography and computed tomography in the assessment of nodal spread in cases with non-small cell lung cancer. Interact Cardiovasc Thorac Surg 10:200–203PubMedCrossRefGoogle Scholar
  71. 71.
    Toloza EM, Harpole L, McCrory DC (2003) Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 123:137S–146SPubMedCrossRefGoogle Scholar
  72. 72.
    Torizuka T, Tanizaki Y, Kanno T et al (2009) Single 20-second acquisition of deep-inspiration breath-hold PET/CT: clinical feasibility for lung cancer. J Nucl Med 50:1579–1584PubMedCrossRefGoogle Scholar
  73. 73.
    Tournoy KG, Maddens S, Gosselin R et al (2007) Integrated FDG-PET/CT does not make invasive staging of the intrathoracic lymph nodes in non-small cell lung cancer redundant: a prospective study. Thorax 62:696–701PubMedCrossRefGoogle Scholar
  74. 74.
    Ung YC, Maziak DE, Vanderveen JA et al (2007) 18Fluorodeoxyglucose positron emission tomography in the diagnosis and staging of lung cancer: a systematic review. J Natl Cancer Inst 99:1753–1767PubMedCrossRefGoogle Scholar
  75. 75.
    Verboom P, van Tinteren H, Hoekstra OS et al (2003) Cost-effectiveness of FDG-PET in staging non-small cell lung cancer: the PLUS study. Eur J Nucl Med Mol Imaging 30:1444–1449PubMedCrossRefGoogle Scholar
  76. 76.
    Vinjamuri M, Craig M, Campbell-Fontaine A et al (2008) Can positron emission tomography be used as a staging tool for small-cell lung cancer? Clin Lung Cancer 9:30–34PubMedCrossRefGoogle Scholar
  77. 77.
    Wahidi MM, Govert JA, Goudar RK et al (2007) Evidence for the treatment of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:94S–107SPubMedCrossRefGoogle Scholar
  78. 78.
    Wauters I, Stroobants S, De Leyn P et al (2010) Impact of FDG-PET-induced treatment choices on long-term outcome in non-small cell lung cancer. Respiration 79:97–104PubMedCrossRefGoogle Scholar
  79. 79.
    Weiss N, Solomon SB (2003) Talc pleurodesis mimics pleural metastases: differentiation with positron emission tomography/computed tomography. Clin Nucl Med 28:811–814PubMedCrossRefGoogle Scholar
  80. 80.
    Wilcox BE, Subramaniam RM, Peller PJ et al (2009) Utility of integrated computed tomography-positron emission tomography for selection of operable malignant pleural mesothelioma. Clin Lung Cancer 10:244–248PubMedCrossRefGoogle Scholar
  81. 81.
    Yildirim H, Metintas M, Entok E et al (2009) Clinical value of fluorodeoxyglucose-positron emission tomography/computed tomography in differentiation of malignant mesothelioma from asbestos-related benign pleural disease: an observational pilot study. J Thorac Oncol 4:1480–1484PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity Hospital BerneBerneSwitzerland
  2. 2.Klinik für Radiologie und NuklearmedizinFranziskus Hospital gem. GmbHBielefeldDeutschland

Personalised recommendations