Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 32))

  • 985 Accesses

Abstract

Establish the mathematical model of the problem being studied. In Particular, we will introduce the concept of the constitutive equation for a fluid, that is, the relation linking the stress tensor and the velocity gradients. The initial conditions for dynamic cases and the boundary conditions will also be discussed. Discuss the discretization methods for the numerical treatment of the mathematical model. Concentrating on the “velocity-pressure” formulation which is the most appropriate for the general treatment of three dimensional problems, we will present the finite difference and finite element discretization methods. As the advection terms are often dominant in these equations, we will be particularly interested in the upwind schemes. Propose a few applications as examples in order to illustrate the implementation of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J.F. Agassant, P. Avenas, P. Sergent, P. Carreau, Polymer Processing, Principles and Modeling, Hanser Publishers, Munich, 1991.

    Google Scholar 

  • X. Aubert, Transformation de coordonnées et schémas compacts aux différences finies appliquées à la résolution des équations de Navier-Stokes, Thèse de doctorat, Faculté des Sciences Appliquées, Université catholique de Louvain, Louvain-la-Neuve, 1983.

    Google Scholar 

  • D. Coles, “Transition in Circular Couette Flow”, J. Fluid Mech., vol. 21, pp. 385–425, 1965.

    Article  MATH  Google Scholar 

  • M. J. Crochet, A. R. Davies, K. Walters, Numerical Simulation of a Non-Newtonian Flow, Elsevier, Amsterdam, 1984.

    Google Scholar 

  • M. J. Crochet, B. Debbaut, R. Keunings, J. M. Marchal, “Polyflow: a multi-purpose finite element program for continous polymer flows”, in Computer modelling for extrusion and other continous processess, K. O. Brien Ed., Hanser, Munich, pp. 25–50, 1992.

    Google Scholar 

  • J. Donea, A. Huerta, Finite Element Methods for Flow Problems, Wiley, New York, 2001.

    Google Scholar 

  • P. Germain, Cours de mécanique des milieux continus, tome 1, théorie générale, Masson, Paris, 1973.

    Google Scholar 

  • V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer, Berlin, 1986.

    MATH  Google Scholar 

  • A.-P. Gonze, Méthode directe de résolution d'écoulements turbulents discrétisés par les éléments finis, Thèse de doctorat, Faculté des Sciences Appliquées, Université catholique de Louvain, Louvain-la-Neuve, 1994.

    Google Scholar 

  • P. Gresho, R.L. Lee, R.L. Sani, “On the time-dependent solution of the incompressible Navier-Stokes equations in two and three dimensions”, in Recent Advances in Numerical Methods in Fluids, Eds. C. Taylor, K. Morgan, Pineridge Press Ltd, Swansea, pp. 27–79, 1980.

    Google Scholar 

  • P. Gresho, R. Sani, M.S. Engelman, Incompressible Flow and the Finite Element Method. Advection-Diffusion and Isothermal Laminar Flow, J. Wiley, West Sussex, U.K., 1998.

    MATH  Google Scholar 

  • P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Elemente Method, vol. 1 and 2, Wiley, New York, 2001.

    Google Scholar 

  • F. H. Harlow, J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface”, Phys. Fluids, vol. 8, pp. 2182–2189, 1965.

    Article  MATH  Google Scholar 

  • D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids, Springer, New York, 1990.

    MATH  Google Scholar 

  • V. Legat, Méthodes d'éléments finis pour le calcul d'écoulements tridimensionnels à surfaces libres, Thèse de doctorat, Faculté des Sciences Appliquées, Université catholique de Louvain, Louvain-la-Neuve, 1992.

    Google Scholar 

  • J. M. Marchal, M. J. Crochet, “A new mixed finite element for calculating viscoelastic flow”, J. Non-Newtonian Fluid Mech, vol. 26, pp. 77–114, 1987.

    Article  MATH  Google Scholar 

  • J. M. Ortega, W. G. Poole, Jr., An Introduction to Numerical Methods for Differential Equations, Pitman, Marksfield, MA, 1981.

    Google Scholar 

  • J. B. Perot, “An analysis of the fractional step method”, Journal of Computational Physics, vol. 108, p. 51–58, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • O. Pironneau, Finite Element Methods for Fluids, J. Wiley, Chichester, 1989.

    Google Scholar 

  • A. Rodriguez-Villa, Etude théorique et expérimentale de l'extrusion-soufflage de corps creux en polymère, Thèse de Doctorat en Sciences et Génie des Matériaux, Ecole des Mines de Paris, 1997.

    Google Scholar 

  • I.L. Ryhming, Dynamique des fluides, Presses Polytechniques et Universitaires Romandes, Lausanne, 1991.

    MATH  Google Scholar 

  • R. Sani, P. Gresho, R. Lee, D. Griffiths et M. Engleman, “The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations”, Int. J. of Num. Meth. Fluids, Vol. 1, p.17 (Part 1), p. 171 (Part 2), 1981.

    Article  MATH  Google Scholar 

  • C.G. Speziale, “Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence”, Annual Review of Fluid Mechanics, vol. 23, pp. 107–157, 1991.

    Article  MathSciNet  Google Scholar 

  • H. Tennekes, J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA, 1972.

    Google Scholar 

  • F. Thomasset, Implementation of finite element methods for Navier-Stokes equations, Springer, New-York, 1981.

    MATH  Google Scholar 

  • J. Van Kan, “A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow”, SIAM J. Sci. Stat. Comput., vol.7, pp. 870–891, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • O.C. Zienkiewicz, R.L. Taylor, Fluid Dynamics, McGraw-Hill, New York, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Rappaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rappaz, M., Bellet, M., Deville, M. (2010). Incompressible Fluid Flow. In: Numerical Modeling in Materials Science and Engineering. Springer Series in Computational Mathematics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11821-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11821-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11820-3

  • Online ISBN: 978-3-642-11821-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics