Extracting Qualitative Knowledge from Medical Guidelines for Clinical Decision-Support Systems

  • Maarten van der Heijden
  • Peter J. F. Lucas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5943)


Medical guidelines provide knowledge about processes that is not directly suitable for building clinical decision-support systems. We discuss a two-step approach where knowledge from a guideline on COPD is translated into temporal logic, and augmented with physiological background knowledge. This allows capturing the dynamics of the processes using qualitative knowledge, while maintaining the temporal nature of the processes. As a second step, this represented clinical knowledge is translated into a decision-theoretic framework. We thus present a representation that can act as a basis for the construction of a decision-support system concerning monitoring of COPD.


Bayesian Network Temporal Logic Description Logic Logic Representation Medical Guideline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hommersom, A., Groot, P., Lucas, P., Balser, M., Schmitt, J.: Verification of medical guidelines using background knowledge in task networks. IEEE Transactions on Knowledge and Data Engineering (2007)Google Scholar
  2. 2.
    Lucas, P.: Quality checking of medical guidelines through logical abduction. In: Proceedings of AI-2003 Research and Development in Intelligent Systems XX (2003)Google Scholar
  3. 3.
    Viegi, G., Pistelli, F., Sherrill, D., Maio, S., Baldacci, S., Carrozzi, L.: Definition, epidemiology and natural history of COPD. Eur. Respir. J. (2007)Google Scholar
  4. 4.
    GOLD: Global Initiative for Obstructive Lung Disease,
  5. 5.
    Knublauch, H., Ferguson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An open development environment for semantic web applications. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 229–243. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Annals of Mathematics and Artificial Intelligence (2000)Google Scholar
  7. 7.
    Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In: Proceedings of FroCoS 1998 (1998)Google Scholar
  8. 8.
    Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Wellman, M.: Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence (1990)Google Scholar
  10. 10.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)zbMATHGoogle Scholar
  11. 11.
    Hommersom, A., Lucas, P., van Bommel, P.: Checking the quality of clinical guidelines using automated reasoning tools. Theory and Practice of Logic Programming (2008)Google Scholar
  12. 12.
    Miksch, S., Shahar, Y., Johnson, P.: Asbru: a task-specific, intention-based, and time-oriented language for representing skeletal plans. In: KEML 1997: 7th Workshop on Knowledge Engineering: Methods & Languages (1997)Google Scholar
  13. 13.
    Fox, J., Johns, N., Lyons, C., Rahmanzadeh, A., Thomson, R., Wilson, P.: PROforma: a general technology for clinical decision support systems. Computer Methods and Programs in Biomedicine (1997)Google Scholar
  14. 14.
    Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical guidelines. Artificial Intelligence in Medicine (2001)Google Scholar
  15. 15.
    de Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explorations Newsletter (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maarten van der Heijden
    • 1
    • 2
  • Peter J. F. Lucas
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenThe Netherlands
  2. 2.Department of Primary and Community CareRadboud University Nijmegen Medical CentreThe Netherlands

Personalised recommendations