Technical Solutions for Integrating Clinical Practice Guidelines with Electronic Patient Records

  • Silvia Panzarasa
  • Silvana Quaglini
  • Anna Cavallini
  • Giuseppe Micieli
  • Simona Marcheselli
  • Mario Stefanelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5943)


The success of a decision support system based on clinical practice guidelines does not only depend on the quality of the decision model used to represent and execute guideline recommendations, but also on the design of interactions of the system with the end-user interface and the electronic patient record. This paper describes technical solutions adopted to add decision support functionalities to two existing information systems for stroke patients. Despite the specific medical application, the approach is quite general, relying on two main functionalities: a real-time decision support system based on workflow technology (careflow) and an off-line tool for non-compliance detection, called “Reasoning on Medical Action” (RoMA). The integration has been developed maintaining independence between data management and knowledge management, and minimizing changes to existing user’s interfaces. The paper illustrates in particular the middleware layer created to allow communication between the evidence-based system and the electronic patient record.


workflow management systems clinical practice guidelines middleware electronic patient record 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eccles, M.P., Grimshaw, J.M.: Selecting, presenting and delivering clinical guidelines: are there any “magic bullets”? Med. J. Aust. 180(6 Suppl.), S52–S54 (2004)Google Scholar
  2. 2.
    Prior, M., Guerin, M., Grimmer-Somers, K.: The effectiveness of clinical guideline implementation strategies-a synthesis of systematic review findings. J. Eval. Clin. Pract. 14(5), 888–897 (2008); ReviewCrossRefGoogle Scholar
  3. 3.
    Groot, P., Hommersom, A., Lucas, P.J., Merk, R.J., ten Teije, A., van Harmelen, F., Serban, R.: Using model checking for critiquing based on clinical guidelines. Artif. Intell. Med. 46(1), 19–36 (2009)CrossRefGoogle Scholar
  4. 4.
    Kawamoto, K., Houlihan, C.A., Balas, E.A., Lobach, D.F.: Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2, 330 (2005)Google Scholar
  5. 5.
    Moyer, P.: Guidelines for Inpatient Treatment of Stroke Improve Quality of Care. In: 30th International Stroke Conference, New Orleans: Abstract 93 (2005)Google Scholar
  6. 6.
    Wells, S., Furness, S., Rafter, N., Horn, E., Whittaker, R., Stewart, A., Moodabe, K., Roseman, P., Selak, V., Bramley, D., Jackson, R.: Integrated electronic decision support increases cardiovascular disease risk assessment four fold in routine primary care practice. Eur. J. Cardiovasc. Prev. Rehabil. 15(2), 173–178 (2008)CrossRefGoogle Scholar
  7. 7.
    Eccles, M., McColl, E., Steen, N., Rousseau, N., Grimshaw, J., Parkin, D., Purves, I.: Effect of computerised evidence based guidelines on management of asthma and angina in adults in primary care: cluster randomised controlled trial. BMJ 325, 941 (2002)CrossRefGoogle Scholar
  8. 8.
    Wears, R.L., Berg, M.: Computer Technology and Clinical Work - Still Waiting for Godot. JAMA 293, 1261–1263 (2005)CrossRefGoogle Scholar
  9. 9.
    Green, C.J., Fortin, P., Maclure, M., Macgregor, A., Robinson, S.: Information system support as a critical success factor for chronic disease management: Necessary but not sufficient. Int. J. Med. Inform. 75(12), 818–828 (2006)CrossRefGoogle Scholar
  10. 10.
    Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R.A., Hall, R., Johnson, P.D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E.H., Stefanelli, M.: Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc. 10(1), 52–68 (2003)CrossRefGoogle Scholar
  11. 11.
    Middleton, B.: The clinical decision support consortium. Stud. Health Technol. Inform. 150, 26–30 (2009)Google Scholar
  12. 12.
    Coiera, E.: The Guide to Health Informatics, 2nd edn. Arnold, London (2003)CrossRefGoogle Scholar
  13. 13.
    SPREAD Stroke Prevention and Educational Awareness Diffusion (2003),
  14. 14.
    Panzarasa, S., Bellazzi, R., Larizza, C., Stefanelli, M.: A careflow management system for chronic patients. In: Fieschi, Yu-Chan, C., Li, J. (eds.) MedInfo 2004, pp. 773–777 (2004)Google Scholar
  15. 15.
    Panzarasa, S., Maddè, S., Quaglini, S., Pistarini, C., Stefanelli, M.: Evidence-based careflow management systems: the case of post-stroke rehabilitation. J. Biomed. Inform. 35(2), 123–139 (2002)CrossRefGoogle Scholar
  16. 16.
    Panzarasa, S., Quaglini, S., Cavallini, A., Marcheselli, S., Stefanelli, M., Micieli, G.: Computerised Guidelines Implementation: Obtaining Feedback for Revision of Guidelines, Clinical Data Model and Data Flow. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 461–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Shalom, E., Shahar, Y., Lunenfeld, E., Taieb-Maimon, M., Young, O., Goren-Bar, D., et al.: The Importance of Creating an Ontology-Specific Consensus Before a Markup-Based Specification of Clinical Guidelines. In: Proc. ECAI, Riva del Garda, Italy (2006)Google Scholar
  18. 18.
    Seyfang, A., Miksch, S., Marcos, M., Wittenberg, J., Polo-Conde, C., Rosenbrand, K.: Bridging the Gap between Informal and Formal Guideline Representations. In: Proc. ECAI, Riva del Garda, Italy (2006)Google Scholar
  19. 19.
    Shiffman, R.N., Michel, G., Essaihi, A., Thornquist, E.: Bridging the guideline implementation gap: a systematic, document-centered approach to guideline implementation. J. Am. Med. Inform. Assoc. 11(5), 418–426 (2004)CrossRefGoogle Scholar
  20. 20.
    Peleg, M., Wang, D., Fodor, A., Keren, S., Karnieli, E.: Lessons learned from adapting a generic narrative diabetic-foot guideline to an institutional decision-support system. Stud. Health Technol. Inform. 139, 243–252 (2008)Google Scholar
  21. 21.
    German, E., Leibowitz, A., Shahar, Y.: An architecture for linking medical decision-support applications to clinical databases and its evaluation. J. Biomed. Inform. 42(2), 203–218 (2009)CrossRefGoogle Scholar
  22. 22.
    Peleg, M., Keren, S., Denekamp, Y.: Mapping Computerized Clinical Guidelines to Electronic Medical Records: Knowledge-Data Ontological Mapper (KDOM). J. Biomed. Inform. 41(1), 180–201 (2008)CrossRefGoogle Scholar
  23. 23.
    Tu, S.W., Musen, M.A., Shankar, R., Campbell, J., Hrabak, K., McClay, J., et al.: Modeling guidelines for integration into clinical workflow. In: Medinfo 2004, pp. 174–178 (2004)Google Scholar
  24. 24.
    Panzarasa, S., Quaglini, S., Micieli, G., Marcheselli, S., Pessina, M., Pernice, C., Cavallini, A., Stefanelli, M.: Improving compliance to guidelines through workflow technology: implementation and results in a stroke unit. Stud. Health Technol. Inform. 129, 834–839 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Silvia Panzarasa
    • 1
  • Silvana Quaglini
    • 2
  • Anna Cavallini
    • 3
  • Giuseppe Micieli
    • 3
  • Simona Marcheselli
    • 4
  • Mario Stefanelli
    • 2
  1. 1.CBIM Consorzio di Bioingegneria e Informatica MedicaPaviaItaly
  2. 2.Department of Computer Engineering and Systems ScienceUniversity of PaviaItaly
  3. 3.IRCCS C. Mondino FoundationPaviaItaly
  4. 4.IRCCS HumanitasRozzanoItaly

Personalised recommendations