Area, Curve Complexity, and Crossing Resolution of Non-planar Graph Drawings

  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
  • Henk Meijer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


In this paper we study non-planar drawings of graphs, and study trade-offs between the crossing resolution (i.e., the minimum angle formed by two crossing segments), the curve complexity (i.e., maximum number of bends per edge), the total number of bends, and the area.


Planar Graph Intersection Angle Curve Complexity Graph Drawing Graph Layout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Didimo, W., Eades, P., Liotta, G.: Drawing Graphs with Right Angle Crossings. In: Dehne, F., et al. (eds.) WADS 2009. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S.H., Ma, K.L. (eds.) APVIS, pp. 97–100. IEEE, Los Alamitos (2007)Google Scholar
  4. 4.
    Huang, W.: An eye tracking study into the effects of graph layout. CoRR abs/0810.4431 (2008)Google Scholar
  5. 5.
    Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: PacificVis, pp. 41–46. IEEE, Los Alamitos (2008)Google Scholar
  6. 6.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interacting with Computers 13(2), 147–162 (2000)CrossRefGoogle Scholar
  7. 7.
    Purchase, H.C., Carrington, D.A., Allder, J.A.: Empirical evaluation of aesthetics-based graph layout. Empirical Software Engineering 7(3), 233–255 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Information Visualization 1(2), 103–110 (2002)CrossRefGoogle Scholar
  9. 9.
    Wood, D.R.: Grid drawings of k-colourable graphs. Computational Geometry 30(1), 25–28 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Henk Meijer
    • 2
  1. 1.Dip. di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di Perugia 
  2. 2.Roosevelt AcademyThe Netherlands

Personalised recommendations