An Improved Algorithm for the Metro-line Crossing Minimization Problem

  • Martin Nöllenburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


In the metro-line crossing minimization problem, we are given a plane graph G = (V,E) and a set \(\mathcal{L}\) of simple paths (or lines) that cover G, that is, every edge e ∈ E belongs to at least one path in \(\mathcal{L}\). The problem is to draw all paths in \(\mathcal{L}\) along the edges of G such that the number of crossings between paths is minimized. This crossing minimization problem arises, for example, when drawing metro maps, in which multiple transport lines share parts of their routes.

We present a new line-layout algorithm with \(O(|\mathcal{L}|^2\cdot |V|)\) running time that improves the best previous algorithms for two variants of the metro-line crossing minimization problem in unrestricted plane graphs. For the first variant, in which the so-called periphery condition holds and terminus side assignments are given in the input, Asquith et al. [1] gave an \(O(|\mathcal{L}|^3\cdot |E|^{2.5})\)-time algorithm. For the second variant, in which all lines are paths between degree-1 vertices of G, Argyriou et al. [2] gave an \(O((|E|+|\mathcal{L}|^2)\cdot |E|)\)-time algorithm.


Plane Graph Improve Algorithm Line Crossing Integer Linear Program Formulation Periphery Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Asquith, M., Gudmundsson, J., Merrick, D.: An ILP for the metro-line crossing problem. In: Harland, J., Manyem, P. (eds.) Proc. 14th Computing: The Australasian Theory Symp. (CATS 2008). CRPIT, vol. 77, pp. 49–56. Australian Comput. Soc. (2008)Google Scholar
  2. 2.
    Argyriou, E., Bekos, M.A., Kaufmann, M., Symvonis, A.: Two polynomial time algorithms for the metro-line crossing minimization problem. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 336–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Ovenden, M.: Metro Maps of the World. Capital Transport Publishing (2003)Google Scholar
  4. 4.
    Stott, J.M., Rodgers, P.: Metro map layout using multicriteria optimization. In: Proc. 8th Internat. Conf. Information Visualisation (IV 2004), pp. 355–362. IEEE, Los Alamitos (2004)CrossRefGoogle Scholar
  5. 5.
    Hong, S.H., Merrick, D., do Nascimento, H.A.D.: Automatic visualization of metro maps. J. Visual Languages and Computing 17, 203–224 (2006)CrossRefGoogle Scholar
  6. 6.
    Nöllenburg, M., Wolff, A.: A mixed-integer program for drawing high-quality metro maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hahn, W.C., Weinberg, R.A.: A subway map of cancer pathways (2002); Poster in Nature Reviews CancerGoogle Scholar
  8. 8.
    Benkert, M., Nöllenburg, M., Uno, T., Wolff, A.: Minimizing intra-edge crossings in wiring diagrams and public transportation maps. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 270–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization on metro maps. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Nöllenburg
    • 1
  1. 1.Fakultät für InformatikUniversität Karlsruhe (TH) and Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations