Drawing Directed Graphs Clockwise

  • Christian Pich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


We present a method for clockwise drawings of directed cyclic graphs. It is based on the eigenvalue decomposition of a skew-symmetric matrix associated with the graph and draws edges clockwise around the center instead of downwards, as in the traditional hierarchical drawing style. The method does not require preprocessing for cycle removal or layering, which often involves computationally hard problems. We describe an efficient algorithm which produces optimal solutions, and we present some application examples.


  1. 1.
    Bachmaier, C., Brandenburg, F.J., Brunner, W., Lovász, G.: Cyclic leveling of directed graphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 348–359. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Carmel, L., Harel, D., Koren, Y.: Combining hierarchy and energy for drawing directed graphs. IEEE Transactions on Visualization and Computer Graphics 10(1), 46–57 (2004)CrossRefGoogle Scholar
  3. 3.
    Ganapathy, M.K., Lodha, S.P.: On minimum circular arrangement. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 394–405. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  5. 5.
    Gower, J.C.: The analysis of asymmetry and orthogonality. In: Recent Developments in Statistics, pp. 109–123 (1977)Google Scholar
  6. 6.
    Gower, J.C., Constantine, A.G.: Graphical representation of asymmetric matrices. Applied Statistics 27, 297–304 (1978)zbMATHCrossRefGoogle Scholar
  7. 7.
    Harary, F., Moser, L.: The theory of round robin tournaments. Amer. Math. Monthly 73, 231–246 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  9. 9.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Koren, Y.: On spectral graph drawing. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 496–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Liberatore, V.: Circular arrangements and cyclic broadcast scheduling. Journal of Algorithms 51(2), 185–215 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Paardekooper, M.H.C.: An eigenvalue algorithm for skew-symmetric matrices. Numerische Mathematik 17(3), 189–202 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Reid, K.B., Beineke, L.W.: Tournaments. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, pp. 169–204. Academic Press, London (1978)Google Scholar
  14. 14.
    Sugiyama, K., Misue, K.: A simple and unified method for drawing graphs: Magnetic-spring algorithm. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 364–375. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ward, R.C., Gray, L.C.: Ward and Leonard C. Gray. Eigensystem compuation for skew-symmetric matrices and a class of symmetric matrices. ACM Transactions on Mathematical Software 4(3), 278–285 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian Pich
    • 1
  1. 1.Chair of Systems DesignETH Zürich 

Personalised recommendations