DAGmaps and ε-Visibility Representations of DAGs

  • Vassilis Tsiaras
  • Ioannis G. Tollis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


DAGmaps are space filling visualizations of DAGs that generalize treemaps. Deciding whether or not a DAG admits a DAGmap is NP-complete. Recently we defined a special case called one-dimensional DAGmap where the admissibility is decided in linear time. However there is no complete characterization of the class of DAGs that admit a one-dimensional DAGmap. In this paper we prove that a DAG admits a one-dimensional DAGmap if and only if it admits a directed ε-visibility representation. Then we give a characterization of the DAGs that admit directed ε-visibility representations. Finally we show that a DAGmap defines a directed three-dimensional ε-visibility representation of a DAG.


DAGmap Treemap DAG Visibility 


  1. 1.
    Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: Making effective use of 2D space to display hierarchies. ACM Transactions on Graphics 21(4), 833–854 (2002)CrossRefGoogle Scholar
  2. 2.
    Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik, K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation for graphs in three dimensions. Journal of Graph Algorithms and Applications 2, 1–16 (1998)MathSciNetGoogle Scholar
  3. 3.
    Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: de Leeuw, W., van Liere, R. (eds.) Data Visualization 2000, Proceedings of the Second Joint Eurographics and IEEE TCVG Symposium on Visualization, pp. 33–42 (2000)Google Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1998)Google Scholar
  5. 5.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science 61(2-3), 175–198 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kant, G., Liotta, G., Tamassia, R., Tollis, I.G.: A visibility representation for graphs in three dimensions. Area requirement of visibility representations of trees 62, 81–88 (1997)MathSciNetGoogle Scholar
  8. 8.
    Lü, H., Fogarty, J.: Cascaded treemaps: examining the visibility and stability of structure in treemaps. In: ACM Proceedings of graphics interface 2008, pp. 259–266 (2008)Google Scholar
  9. 9.
    Romanik, K.: Directed VR-representable graphs have unbounded dimension. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 177–181. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete and Computational Geometry 1(1), 321–341 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tsiaras, V.: Algorithms for the Analysis and Visualization of Biomedical Networks. Ph.D. thesis, Computer Science Department, University of Crete (2009) (submitted)Google Scholar
  13. 13.
    Tsiaras, V., Triantafilou, S., Tollis, I.G.: DAGmaps: Space Filling Visualization of Directed Acyclic Graphs. Journal of Graph Algorithms and Applications 13(3), 319–347 (2009)zbMATHGoogle Scholar
  14. 14.
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM Journal on Computing 11(2), 298–313 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wismath, S.K.: Characterizing bar line-of-sight graphs. In: SCG 1985: Proceedings of the first annual symposium on Computational geometry, pp. 147–152. ACM, New York (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vassilis Tsiaras
    • 1
  • Ioannis G. Tollis
    • 1
  1. 1.Institute of Computer Science, Foundation for Research and Technology-Hellas, Department of Computer ScienceUniversity of CreteHeraklionGreece

Personalised recommendations