On Planar Supports for Hypergraphs

  • Kevin Buchin
  • Marc van Kreveld
  • Henk Meijer
  • Bettina Speckmann
  • Kevin Verbeek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


A graph G is a support for a hypergraph \(H = (V, \mathcal{S})\) if the vertices of G correspond to the vertices of H such that for each hyperedge \(S_i \in \mathcal{S}\) the subgraph of G induced by S i is connected. G is a planar support if it is a support and planar. Johnson and Pollak [9] proved that it is NP-complete to decide if a given hypergraph has a planar support. In contrast, there are polynomial time algorithms to test whether a given hypergraph has a planar support that is a path, cycle, or tree. In this paper we present an algorithm which tests in polynomial time if a given hypergraph has a planar support that is a tree where the maximal degree of each vertex is bounded. Our algorithm is constructive and computes a support if it exists. Furthermore, we prove that it is already NP-hard to decide if a hypergraph has a 3-outerplanar support.


Tree Support Total Demand Connectivity Structure Dual Graph Planar Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. Journal of the ACM 30, 479–513 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  4. 4.
    Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and planarity using pq-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Brinkmeier, M., Werner, J., Recknagel, S.: Communities in graphs and hypergraphs. In: 16th ACM Conference on Information and Knowledge Management, pp. 869–872 (2007)Google Scholar
  6. 6.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  7. 7.
    Flower, J., Howse, J.: Generating Euler diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 61–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Hsu, W.L.: A simple test for the consecutive ones property. Journal of Algorithms 43(1), 1–16 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnson, D., Pollak, H.: Hypergraph planarity and the complexity of drawing Venn diagrams. Journal of Graph Theory 11(3), 309–325 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kaufmann, M., van Kreveld, M., Speckmann, B.: Subdivision drawings of hypergraphs. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 396–407. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Mathematical Programming, Series B 98, 385–414 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lundgren, J.R.: Food webs, competition graphs, competition-common enemy graphs and niche graphs. Applications of Combinatorics and Graph Theory to the Biological and Social Sciences 17, 221–243 (1989)MathSciNetGoogle Scholar
  13. 13.
    Sander, G.: Layout of directed hypergraphs with orthogonal hyperedges. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) GD 2004. LNCS, vol. 3393, pp. 381–386. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Tamura, A., Tamura, Y.: Degree constrained tree embedding into points in the plane. Information Processing Letters 44, 211–214 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on Computing 13, 566–579 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tucker, A.: Matrix characterizations of circular-arc graphs. Pacific Journal of Mathematics 39(2), 535–545 (1971)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Marc van Kreveld
    • 2
  • Henk Meijer
    • 3
  • Bettina Speckmann
    • 1
  • Kevin Verbeek
    • 1
  1. 1.Dep. of Mathematics and Computer ScienceTU EindhovenThe Netherlands
  2. 2.Dep. of Computer ScienceUtrecht UniversityThe Netherlands
  3. 3.Roosevelt AcademyMiddelburgThe Netherlands

Personalised recommendations