3D Visibility Representations by Regular Polygons

  • Jan Štola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


We study 3D visibility representations of complete graphs where vertices are represented by equal regular polygons lying in planes parallel to the xy-plane. Edges correspond to the z-parallel visibility among these polygons.

We improve the upper bound on the maximum size of a complete graph with a 3D visibility representation by regular n-gons from 2 O(n) to O(n 4).


Unit Circle Maximum Size Complete Graph Regular Polygon Monotone Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Štola, J.: 3D Visibility Representations of Complete Graphs. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 226–237. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Babilon, R., Nyklová, H., Pangrác, O., Vondrák, J.: Visibility Representations of Complete Graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 333–340. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Fekete, S.P., Houle, M.E., Whitesides, S.: New Results on a Visibility Representation of Graphs in 3D. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 234–241. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Bose, P., Everett, H., Fekete, S.P., Lubiw, A., Meijer, H., Romanik., K., Shermer, T., Whitesides, S.: On a visibility representation for graphs in three dimensions. In: Di Battista, G., Eades, P., de Fraysseix, H., Rosenstiehl, P., Tamassia, R. (eds.) GD 1993, pp. 38–39 (1993)Google Scholar
  5. 5.
    Štola, J.: Unimaximal Sequences of Pairs in Rectangle Visibility Drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 61–66. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Fekete, S.P., Meijer, H.: Rectangle and box visibility graphs in 3D. Int. J. Comput. Geom. Appl. 97, 1–28 (1997)MathSciNetGoogle Scholar
  7. 7.
    Tamassia, R., Tollis, I.G.: A unifed approach to visibility representations of planar graphs. Discrete and Computational Geometry 1, 321–341 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dean, A.M., Hutchinson, J.P.: Rectangle-Visibility Representations of Bipartite Graphs. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 159–166. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)MathSciNetGoogle Scholar
  10. 10.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 264–286 (1930)CrossRefGoogle Scholar
  11. 11.
    Graham, R., Rothschild, B., Spencer, J.: Ramsey Theory, 2nd edn. Wiley-Interscience Series in Discrete Mathematics. Wiley, New York (1990)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Štola
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations