Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs

  • Ioannis Z. Emiris
  • Elias P. Tsigaridas
  • Antonios E. Varvitsiotis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems with suitable structure, so that their mixed volume, which bounds the number of common roots, to yield interesting upper bounds on the number of embeddings. We focus on \({\mathbb R}^2\) and \({\mathbb R}^3\), where Laman graphs and 1-skeleta of convex simplicial polyhedra, respectively, admit inductive Henneberg constructions. We establish the first general lower bound in \({\mathbb R}^3\) of about 2.52 n , where n denotes the number of vertices. Moreover, our implementation yields upper bounds for n ≤ 10 in \({\mathbb R}^2\) and \({\mathbb R}^3\), which reduce the existing gaps, and tight bounds up to n = 7 in \({\mathbb R}^3\).


Rigid graph Euclidean embedding Henneberg construction polynomial system root bound cyclohexane caterpillar 


  1. 1.
    Bernstein, D.N.: The number of roots of a system of equations. Fun. Anal. Pril. 9, 1–4 (1975)CrossRefGoogle Scholar
  2. 2.
    Borcea, C., Streinu, I.: The number of embeddings of minimally rigid graphs. Discrete Comp. Geometry 31(2), 287–303 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bowen, R., Fisk, S.: Generation of triangulations of the sphere. Math. of Computation 21(98), 250–252 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Emiris, I.Z., Mourrain, B.: Computer algebra methods for studying and computing molecular conformations. Algorithmica, Special Issue 25, 372–402 (1999)MathSciNetGoogle Scholar
  5. 5.
    Emiris, I.Z., Varvitsiotis, A.: Counting the number of embeddings of minimally rigid graphs. In: Proc. Europ. Workshop Comput. Geometry, Brussels (2009)Google Scholar
  6. 6.
    Gluck, H.: Almost all simply connected closed surfaces are rigid. Lect. Notes in Math. 438, 225–240 (1975)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Steffens, R., Theobald, T.: Mixed volume techniques for embeddings of Laman graphs. In: Proc. Europ. Workshop Comput. Geometry, Nancy, France, pp. 25–28 (2008); Final version accepted in Comp. Geom: Theory & Appl., Special IssueGoogle Scholar
  8. 8.
    Walter, D., Husty, M.: On a 9-bar linkage, its possible configurations and conditions for paradoxical mobility. In: IFToMM Congress, Besançon, France (2007)Google Scholar
  9. 9.
    Wunderlich, W.: Gefärlice Annahmen der Trilateration und bewegliche Fachwerke I. Zeitschrift für Angewandte Mathematik und Mechanik 57, 297–304 (1977)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
  • Elias P. Tsigaridas
    • 2
  • Antonios E. Varvitsiotis
    • 3
  1. 1.University of AthensAthensGreece
  2. 2.INRIA MéditerranéeSophia-AntipolisFrance
  3. 3.CWIAmsterdamThe Netherlands

Personalised recommendations