Geometric Simultaneous Embeddings of a Graph and a Matching

  • Sergio Cabello
  • Marc van Kreveld
  • Giuseppe Liotta
  • Henk Meijer
  • Bettina Speckmann
  • Kevin Verbeek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


The geometric simultaneous embedding problem asks whether two planar graphs on the same set of vertices in the plane can be drawn using straight lines, such that each graph is plane. Geometric simultaneous embedding is a current topic in graph drawing and positive and negative results are known for various classes of graphs. So far only connected graphs have been considered. In this paper we present the first results for the setting where one of the graphs is a matching.

In particular, we show that there exists a planar graph and a matching which do not admit a geometric simultaneous embedding. This generalizes the same result for a planar graph and a path. On the positive side, we describe algorithms that compute a geometric simultaneous embedding of a matching and a wheel, outerpath, or tree. Our proof for a matching and a tree sheds new light on a major open question: do a tree and a path always admit a geometric simultaneous embedding? Our drawing algorithms minimize the number of orientations used to draw the edges of the matching. Specifically, when embedding a matching and a tree, we can draw all matching edges horizontally. When embedding a matching and a wheel or an outerpath, we use only two orientations.


Planar Graph Outerplanar Graph Graph Drawing Matching Edge Graph Embedding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Braß, P., Cenek, E., Duncan, C., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S., Lubiw, A., Mitchell, J.: On simultaneous planar graph embeddings. Computational Geometry: Theory & Applications 36(2), 117–130 (2007)zbMATHGoogle Scholar
  2. 2.
    Di Giacomo, E., Didimo, W., van Kreveld, M., Liotta, G., Speckmann, B.: Matched drawings of planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 183–194. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Erten, C., Harding, P., Kobourov, S., Wampler, K., Yee, G.: Exploring the computing literature using temporal graph visualization. In: Proc. Conference on Visualization and Data Analysis, pp. 45–56 (2003)Google Scholar
  4. 4.
    Erten, C., Harding, P., Kobourov, S., Wampler, K., Yee, G.: GraphAEL: Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Erten, C., Kobourov, S.: Simultaneous embedding of planar graphs with few bends. Journal of Graph Algorithms and Applications 9(3), 347–364 (2005)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Frati, F., Kaufmann, M., Kobourov, S.: Constrained simultaneous and near-simultaneous embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 268–279. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when drawn simultaneously. Discrete Mathematics (to appear)Google Scholar
  9. 9.
    Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Information Visualization 1(2), 103–110 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sergio Cabello
    • 1
  • Marc van Kreveld
    • 2
  • Giuseppe Liotta
    • 3
  • Henk Meijer
    • 4
  • Bettina Speckmann
    • 5
  • Kevin Verbeek
    • 5
  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaSlovenia
  2. 2.Dep. of Computer ScienceUtrecht UniversityThe Netherlands
  3. 3.Dip. di Ing. Elettronica e dell’InformazioneUniversità degli Studi di PerugiaItaly
  4. 4.Roosevelt AcademyMiddelburgThe Netherlands
  5. 5.Dep. of Mathematics and Computer ScienceTU EindhovenThe Netherlands

Personalised recommendations