Advertisement

Leftist Canonical Ordering

  • Melanie Badent
  • Michael Baur
  • Ulrik Brandes
  • Sabine Cornelsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

Canonical ordering is an important tool in planar graph drawing and other applications. Although a linear-time algorithm to determine canonical orderings has been known for a while, it is rather complicated to understand and implement, and the output is not uniquely determined. We present a new approach that is simpler and more intuitive, and that computes a newly defined leftist canonical ordering of a triconnected graph which is a uniquely determined leftmost canonical ordering.

Keywords

Planar Graph Outer Face Left Neighbor Singular Vertex Feasible Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barbay, J., Aleardi, L.C., He, M., Munro, I.: Succinct Representation of Labeled Graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 316–328. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Barequet, G., Goodrich, M.T., Riley, C.: Drawing Planar Graphs with Large Vertices and Thick Edges. J. of Graph Algorithms and Applications 8(1), 3–20 (2004)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Biedl, T.C.: Drawing Planar Partitions I: LL-Drawings and LH-Drawings. In: Proc. 14th Symp. on Computational Geometry, pp. 287–296. ACM Press, New York (1998)Google Scholar
  4. 4.
    Biedl, T.C., Kaufmann, M.: Area-Efficient Static and Incremental Graph Drawings. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Bose, P., Gudmundsson, J., Smid, M.: Constructing Plane Spanners of Bounded Degree and Low Weight. Algorithmica 42(3-4), 249–264 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brehm, E.: 3-Orientations and Schnyder 3-Tree-Decompositions. Master’s thesis, FU Berlin (2000)Google Scholar
  7. 7.
    Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing. In: Proc. 12th ACM–SIAM Symp. on Discrete Algorithms (SODA 2001), pp. 506–515 (2001)Google Scholar
  8. 8.
    Chrobak, M., Kant, G.: Convex Grid Drawings of 3-Connected Planar Graphs. Int. J. of Computational Geometry and Applications 7(3), 211–223 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chrobak, M., Nakano, S.-I.: Minimum-Width Grid Drawings of Plane Graphs. Computational Geometry 11(1), 29–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chrobak, M., Payne, T.H.: A Linear-Time Algorithm for Drawing a Planar Graph on a Grid. Information Processing Letters 54(4), 241–246 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chuang, R.C.-N., Garg, A., He, X., Kao, M.-Y., Lu, H.-I.: Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 118–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    de Fraysseix, H., Mendez, P.O.: Regular Orientations, Arboricity, and Augmentation. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 111–118. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    de Fraysseix, H., Pach, J., Pollack, R.: Small Sets Supporting Fáry Embeddings of Planar Graphs. In: Proc. 20th ACM Symp. on the Theory of Computing (STOC 1988), pp. 426–433. ACM Press, New York (1988)Google Scholar
  14. 14.
    de Fraysseix, H., Pach, J., Pollack, R.: How to Draw a Planar Graph on a Grid. Combinatorica 10(1), 41–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Di Battista, G., Tamassia, R., Vismara, L.: Output-Sensitive Reporting of Disjoint Paths. Algorithmica 23(4), 302–340 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Di Giacomo, E., Didimo, W., Liotta, G.: Radial Drawings of Graphs: Geometric Constraints and Trade-offs. J. of Discrete Algorithms 6(1), 109–124 (2008)zbMATHCrossRefGoogle Scholar
  17. 17.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-Constrained Drawings of Planar Graphs. Computational Geometry 30(2), 1–23 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dujmović, V., Suderman, M., Wood, D.R.: Really Straight Graph Drawings. In: GD 2004 [21], pp. 122–132Google Scholar
  19. 19.
    Erten, C., Kobourov, S.G.: Simultaneous Embedding of Planar Graphs with Few Bends. In: GD 2004 [21], pp. 195–205Google Scholar
  20. 20.
    Fößmeier, U., Kant, G., Kaufmann, M.: 2-Visibility Drawings of Planar Graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 155–168. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Pach, J. (ed.): GD 2004. LNCS, vol. 3383. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  22. 22.
    Goodrich, M.T., Wagner, C.G.: A Framework for Drawing Planar Graphs with Curves and Polylines. J. of Algorithms 37(2), 399–421 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gutwenger, C., Mutzel, P.: Planar Polyline Drawings with Good Angular Resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Harel, D., Sardas, M.: An Algorithm for Straight-Line Drawing of Planar Graphs. Algorithmica 20, 119–135 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    He, X.: On Floor-Plan of Plane Graphs. SIAM J. on Computing 28(6), 2150–2167 (1999)zbMATHCrossRefGoogle Scholar
  26. 26.
    He, X., Kao, M.-Y., Lu, H.-I.: Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings. SIAM J. on Discrete Mathematics 12(3), 317–325 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kant, G.: Drawing Planar Graphs using the lmc-Ordering. Technical Report RUU-CS-92-33, Dep. of Information and Computing Sciences, Utrecht University (1992)Google Scholar
  28. 28.
    Kant, G.: Drawing Planar Graphs Using the Canonical Ordering. Algorithmica 16(4), 4–32 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kant, G.: A More Compact Visibility Representation. Int. J. of Computational Geometry and Applications 7(3), 197–210 (1997)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Kant, G., He, X.: Regular Edge Labeling of 4-Connected Plane Graphs and its Applications in Graph Drawing Problems. Theoretical Computer Science 172(1-2), 175–193 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Miura, K., Azuma, M., Nishizeki, T.: Canonical Decomposition, Realizer, Schnyder Labeling and Orderly Spanning Trees of Plane Graphs. Int. J. of Foundations of Computer Science 16(1), 117–141 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Nakano, S.-I.: Planar Drawings of Plane Graphs. IEICE Transactions on Information and Systems E83-D(3), 384–391 (2000)Google Scholar
  33. 33.
    Schnyder, W.: Embedding Planar Graphs on the Grid. In: Proc. 1st ACM–SIAM Symp. on Discrete Algorithms (SODA 1990), pp. 138–148 (1990)Google Scholar
  34. 34.
    Wada, K., Chen, W.: Linear Algorithms for a k-Partition Problem of Planar Graphs. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 324–336. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Melanie Badent
    • 1
  • Michael Baur
    • 2
  • Ulrik Brandes
    • 1
  • Sabine Cornelsen
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of Konstanz 
  2. 2.Department of Computer ScienceUniversität Karlsruhe (TH) 

Personalised recommendations