Upward Planarization Layout

  • Markus Chimani
  • Carsten Gutwenger
  • Petra Mutzel
  • Hoi-Ming Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


Recently, we presented a new practical method for upward crossing minimization [6], which clearly outperformed existing approaches for drawing hierarchical graphs in that respect. The outcome of this method is an upward planar representation (UPR), a planarly embedded graph in which crossings are represented by dummy vertices. However, straight-forward approaches for drawing such UPRs lead to quite unsatisfactory results. In this paper, we present a new algorithm for drawing UPRs that greatly improves the layout quality, leading to good hierarchal drawings with few crossings. We analyze its performance on well-known benchmark graphs and compare it with alternative approaches.


Directed Acyclic Graph Bend Point Layout Algorithm Dummy Node Layer Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Software 4, 163–173 (1984)CrossRefGoogle Scholar
  2. 2.
    Di Battista, G., Pietrosanti, E., Tamassia, R., Tollis, I.G.: Automatic layout of PERT diagrams with X-PERT. In: Proc. IEEE Workshop on Visual Languages, pp. 171–176 (1989)Google Scholar
  3. 3.
    Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Branke, J., Leppert, S., Middendorf, M., Eades, P.: Width-restricted layering of acyclic digraphs with consideration of dummy nodes. Inf. Process. Lett. 81(2), 59–63 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229–240. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Chimani, M., Gutwenger, C., Mutzel, P., Wong, H.-M.: Layer-free upward crossing minimization. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 55–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. Int. J. Comput. Geom. Appl. 10(6), 623–648 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5-6), 303–325 (1997)zbMATHGoogle Scholar
  9. 9.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7(4), 381–401 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eiglsperger, M., Kaufmann, M., Eppinger, F.: An approach for mixed upward planarization. J. Graph Algorithms Appl. 7(2), 203–220 (2003)MathSciNetGoogle Scholar
  11. 11.
    Gansner, E., Koutsofios, E., North, S., Vo, K.-P.: A technique for drawing directed graphs. Software Pract. Exper. 19(3), 214–229 (1993)Google Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 16–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Nikolov, N.S., Tarassov, A.: Graph layering by promotion of nodes. Discrete Applied Mathematics 154(5), 848–860 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    OGDF – the Open Graph Drawing Framework. Technical University of Dortmund, Chair of Algorithm Engineering,
  17. 17.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(1), 343–353 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Sys. Man. Cyb. 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Markus Chimani
    • 1
  • Carsten Gutwenger
    • 1
  • Petra Mutzel
    • 1
  • Hoi-Ming Wong
    • 1
  1. 1.Chair for Algorithm EngineeringTU DortmundGermany

Personalised recommendations