Skip to main content

Low-Power Dual-Edge Triggered State Retention Scan Flip-Flop

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5953))

Abstract

This work presents a low-power dual-edge triggered static scanable flip-flop that uses reduced swing-clock and -data to manage dynamic power. The circuit employs clock- and power-gating during idle mode to eliminate dynamic power and reduce static power, while retaining circuit’s state. The static structure of the circuit makes it feasible to be employed in variable frequency power control designs. HSPICE post-layout simulation conducted for 90nm CMOS technology showed that in terms of power-delay product, device count, and leakage power the proposed design is comparable to other high performance static flip-flops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE 91(2), 305–327 (2003)

    Article  Google Scholar 

  2. Weste, N., Harris, D.: CMOS VLSI Design, 3rd edn. Addison-Wesley, Reading (2004)

    Google Scholar 

  3. ITRS, http://public.itrs.net

  4. Powell, M., Yang, S., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-Vdd: A circuit technique to reduce leakage in deep-submicron cache memories. In: Proceedings of International Symposium on Low Power Electronics and Design, pp. 90–95 (2000)

    Google Scholar 

  5. Agarwal, A., Li, H., Roy, K.: DRG-Cache: A Data Retention Gated-Ground Cache for Low Power. In: 39th Design Automation Conference (DAC 2002), p. 473 (2002)

    Google Scholar 

  6. Kahng, A.B., Muddu, S., Sharma, P.: Impact of Gate-Length Biasing on Threshold-Voltage Selection. In: Proceedings of the 7th international Symposium on Quality Electronic Design (2006)

    Google Scholar 

  7. Oklobdzija, V.G.: Clocking and Clocked Storage Elements in a Multi-Gigahertz Environment. IBM Journal of Research and Development 47(5/6), 567–584 (2003)

    Article  Google Scholar 

  8. Shigematsu, S., Mutoh, S., Matsuya, Y., Tanabe, Y., Yamada, J.: A 1-V high-speed MTCMOS circuit scheme for power-down application circuits. IEEE J. of Solid-State Circuits 32(6), 861–869 (1997)

    Article  Google Scholar 

  9. Kao, J., Chandrakasan, A.: MTCMOS sequential circuits. In: Proceedings of the 27th European Solid-State Circuits Conference, ESSCIRC 2001, September 2001, pp. 317–320 (2001)

    Google Scholar 

  10. Calhoun, B.H., Honore, F.A., Chandrakasan, A.P.: A leakage reduction methodology for distributed MTCMOS. IEEE Journal of Solid-State Circuits 39(5), 818–826 (2004)

    Article  Google Scholar 

  11. Vesterbacka, M.: A Robust Differential Scan Flip-Flop. In: Proc. IEEE Int. Symp. on Circuits and Systems, I, pp. 334–337 (1999)

    Google Scholar 

  12. Stojanovic, V., Oklobdzija, V.G.: Comparative analysis of master-slave latches and flip-flops for high-performance and low-power systems. IEEE Journal of Solid-State Circuits 34(4), 536–548 (1999)

    Article  Google Scholar 

  13. Kursun, V., Friedman, E.G.: Multi-Voltage CMOS Circuit Design. John Wiley & Sons Ltd., Chichester (2006)

    Book  Google Scholar 

  14. Goel, S., Elgamel, M.A., Bayoumi, M.A., Hanafy, Y.: Design methodologies for high-performance noise-tolerant XOR-XNOR circuits. IEEE Transactions on Circuits and Systems I: Regular Papers 53(4), 867–878 (2006)

    Article  Google Scholar 

  15. Zhao, P., McNeely, J., Golconda, P., Bayoumi, M.A., Barcenas, R.A., Kuang, W.: Low-power clock branch sharing double-edge triggered flip-flop. IEEE Trans. Very Large Scale Integr. Syst. 15(3), 338–345 (2007)

    Article  Google Scholar 

  16. Ishihara, F., Sheikh, F., Nikolić, B.: Level conversion for dual-supply systems. IEEE Trans. Very Large Scale Integr. Syst. 12(2), 185–195 (2004)

    Article  Google Scholar 

  17. Tschanz, J., Narendra, S., Chen, Z., Borkar, S., Sachdev, M., De, V.: Comparative Delay and Energy of Single Edge-triggered and Dual Edge Triggered Pulsed Flip-flops for High-performance Microprocessors. In: Proc. ISPLED 2001, pp. 207–212 (2001)

    Google Scholar 

  18. Nedovic, N., Oklobdzija, V.G.: Dual-edge triggered storage elements and clocking strategy for low-power systems. IEEE Trans. Very Large Scale Integr. Syst. 13(5) (May 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karimiyan, H., Sayedi, S.M., Saidi, H. (2010). Low-Power Dual-Edge Triggered State Retention Scan Flip-Flop. In: Monteiro, J., van Leuken, R. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2009. Lecture Notes in Computer Science, vol 5953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11802-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11802-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11801-2

  • Online ISBN: 978-3-642-11802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics