Five Steps in Latent Curve and Latent Change Score Modeling with Longitudinal Data

  • John J. McArdleEmail author
  • Kevin J. Grimm


This paper describes a set of applications of one class of longitudinal growth analysis - latent curve (LCM) and latent change score (LCS) analysis using structural equation modeling (SEM) techniques. These techniques are organized in five sections based on Baltes & Nesselroade (1979). (1) Describing the observed and unobserved longitudinal data. (2) Characterizing the developmental shape of both individuals and groups. (3) Examining the predictors of individual and group differences in developmental shapes. (4) Studying dynamic determinants among variables over time. (5) Studying group differences in dynamic determinants among variables over time. To illustrate all steps, we present SEM analyses of a relatively large set of data from the National Longitudinal Survey of Youth (NLSY). The inclusion of all five aspects of latent curve modeling is not often used in longitudinal analyses, so we discuss why more efforts to include all five are needed in developmental research.


Structural Equation Modeling Reading Comprehension Antisocial Behavior Latent Curve Latent Growth Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work described here has been supported since 1980 by the National Institute on Aging (Grant#AG-07137). Kevin Grimm was supported by a National Science Foundation REECE Program Grant (DRL-0815787) and the National Center for Research on Early Childhood Education, Institute of Education Sciences, U.S. Department of Education (R305A06021). We are especially grateful to the assistance of our close friend and colleague, John R. Nesselroade. This research was also influenced by discussions with many others, including Paul Baltes, Steven Boker, Emilio Ferrer, Paolo Ghisletta, Fumiaki Hamagami, John Horn, Bill Meredith, and Carol Prescott.


  1. Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1-39). New York: Academic Press.Google Scholar
  2. Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Experimental Aging Research, 21, 77-93.CrossRefGoogle Scholar
  3. Browne, M., & du Toit, S. H. C. (1991). Models for learning data. In L. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47-68). Washington, DC: APA Press.Google Scholar
  4. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.Google Scholar
  5. Cattell, R. B. (1980). The separation and evaluation of personal and environmental contributions to behavior by the person-centered model (PCER). Multivariate Behavioral Research, 15, 371-402.CrossRefGoogle Scholar
  6. Cnaan, A., Laird, N. M., & Slasor, P. (1997). Using the general linear mixed model to analyze unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349-2380.CrossRefGoogle Scholar
  7. Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation design and analysis issues for field settings. Skokie, IL: Rand-McNally.Google Scholar
  8. Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7, 41-63.CrossRefGoogle Scholar
  9. Dunn, L. M., & Markwardt, F. C. (1970). Peabody Individual Achievement Test manual. Circle Pines, MN: American Guidance Service.Google Scholar
  10. Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. International Journal of Behavioral Development, 31, 328-339.CrossRefGoogle Scholar
  11. Grimm, K. J., & McArdle, J. J. (2005). A note on the computer generation of structural expectations. In F. Dansereau & F. Yammarino (Eds.), Multi-level issues in strategy and research methods (Volume 4 of Research in multi-level issues) (pp. 335-372). Amsterdam: JAI Press/Elsevier.Google Scholar
  12. Hamagami, F., & McArdle, J. J. (2007). Dynamic extensions of latent difference score models. In S. M. Boker & M. J. Wenger, Data analytic techniques for dynamical systems. Notre Dame series on quantitative methodology (pp. 47-85). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  13. Horn, J. L. (1973). On extension analysis and its relation to correlations between variables and factor scores. Multivariate Behavioral Research, 8, 477-489.CrossRefGoogle Scholar
  14. Jöreskog, K. G., & Sörbom, D. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.zbMATHGoogle Scholar
  15. Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.zbMATHCrossRefGoogle Scholar
  16. Littell, R. C., Miliken, G. A., Stoup, W. W., & Wolfinger, R. D. (1996). SAS system for mixed models. Cary, NC: SAS institute.Google Scholar
  17. Little, R. J. A. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Magnussen, D, (2003). Person-Centered methodology. In S. C. Peck & R. W. Roeser (Eds.), Person-centered approaches to studying development in context. San Francisco: Jossey-Bass.Google Scholar
  19. McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology: Vol. 2 (pp. 561-614). New York: Plenum.Google Scholar
  20. McArdle, J. J. (1989). Structural modeling experiments using multiple growth functions. In P. Ackerman, R. Kanfer & R. Cudeck (Eds.), Learning and individual differences: Abilities, motivation, and methodology (pp. 71-117). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. McArdle, J. J. (1994). Structural factor analysis experiments with incomplete data. Multivariate Behavioral Research, 29, 409-454.CrossRefGoogle Scholar
  22. McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analyses. In R. Cudeck, S. du Toit & D. Sörbom (Eds.), Structural equation modeling: Present and future (pp. 342-380). Lincolnwood, IL: Scientific Software International.Google Scholar
  23. McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. In J. J. McArdle & A. Maydeu-Olivares (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 225-273). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  24. McArdle, J. J. (2007). Dynamic structural equation modeling in longitudinal experimental studies. In K. van Montfort, J. Oud & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 159-188). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  25. McArdle, J. J. (2009). Latent variable modeling of differences and changes. Annual Review of Psychology, 60, 577-605.CrossRefGoogle Scholar
  26. McArdle, J. J., & Bell, R. Q. (2000). An introduction to latent growth models for developmental data analysis. In T. D. Little, K. U. Schnabel & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 69-107). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  27. McArdle, J. J., Caja-Ferrer, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115-142.CrossRefGoogle Scholar
  28. McArdle, J. J., & Cattell, R. B. (1994). Structural equation models of factorial invariance in parallel proportional profiles and oblique confactor. Multivariate Behavioral Research, 20, 63-113.CrossRefGoogle Scholar
  29. McArdle, J. J., & Epstein, D. B. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110-133.CrossRefGoogle Scholar
  30. McArdle, J. J., & Hamagami, F. (1992). Modeling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research, 18, 145-166.Google Scholar
  31. McArdle, J. J., & Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change. (pp. 137-176). Washington, DC: APA Press.Google Scholar
  32. McArdle, J. J., Hamagami, F., Meredith, W., & Bradway, K. P. (2001). Modeling the dynamic hypotheses of Gf-Gc theory using longitudinal life-span data. Learning and Individual Differences, 12, 53-79.CrossRefGoogle Scholar
  33. McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. The British Journal of Mathematical and Statistical Psychology, 37, 234-251.zbMATHGoogle Scholar
  34. McArdle, J. J., & Nesselroade, J. R. (1994). Using multivariate data to structure developmental change. In S. H. Cohen & H. W. Reese (Eds.), Life-span developmental psychology: Methodological innovations (pp. 223-267). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  35. McArdle, J. J., & Nesselroade, J. R. (2003). Growth curve analyses in contemporary psychological research. In J. Schinka & W. Velicer (Eds.), Comprehensive handbook of psychology: Vol. 2. Research methods in psychology (pp. 447-480). New York: Pergamon Press.Google Scholar
  36. McArdle, J. J., Small, B. J., Backman, L., & Fratiglioni, L. (2005). Longitudinal models of growth and survival applied to the early detection of Alzheimer’s Disease. Journal of Geriatric Psychiatry and Neurology, 18, 234-241.CrossRefGoogle Scholar
  37. Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.CrossRefGoogle Scholar
  38. Muthén, B., & Muthén, L. (2000). Integrating person-centered and variable-centered analysis: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882-891.CrossRefGoogle Scholar
  39. Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469.zbMATHCrossRefGoogle Scholar
  40. Miyazaki, Y., & Raudenbush, S. W. (2000). Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods, 5, 24-63.CrossRefGoogle Scholar
  41. Nagin, D. (1999). Analyzing developmental trajectories: Semi-parametric, group-based approach. Psychological Methods, 4, 139-177.CrossRefGoogle Scholar
  42. Nesselroade, J. R., & Baltes, P. B. (Eds.) (1979). Longitudinal research in the study of behavior and development. New York: Academic Press.Google Scholar
  43. Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235-265). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  44. Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199-215.CrossRefMathSciNetGoogle Scholar
  45. Ram, N., & Grimm, K. J. (2007). Using simple and complex growth models to articulate developmental change: Matching method to theory. International Journal of Behavioral Development, 31, 303-316.CrossRefGoogle Scholar
  46. Rao, C. R. (1958). Some statistical methods for the comparison of growth curves. Biometrics, 14, 1-17.zbMATHCrossRefGoogle Scholar
  47. Rogosa, D. R. (1978). Some results for the Johnson-Neyman technique. Dissertation Abstracts International, 38(9-A).Google Scholar
  48. Rogosa, D., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203-228.CrossRefMathSciNetGoogle Scholar
  49. Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323-355.Google Scholar
  50. Sliwinski, M., & Buschke, H. (1999). Cross-sectional and longitudinal relationships among age, cognition, and processing speed. Psychology and Aging, 14, 18-33.CrossRefGoogle Scholar
  51. Sullivan, E. V., Rosenbloom, M. J., Lim, K. O., & Pfefferman, A. (2000). Longitudinal changes in cognition, gait, balance in abstinent and relapsed alcoholic men: Relationships to changes in brain structure. Neuropsychology, 14, 178-188.CrossRefGoogle Scholar
  52. Verbeke, G., Molenberghs, G., Krickeberg, K., & Fienberg, S. (Eds.) (2000). Linear mixed models for longitudinal data. New York: Springer Verlag.zbMATHGoogle Scholar
  53. Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 21-55.zbMATHCrossRefGoogle Scholar
  54. Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363-381.CrossRefGoogle Scholar
  55. Wohlwill, J. F. (1973). The study of behavioral development. Oxford, England: Academic Press.Google Scholar
  56. Wohlwill, J. F. (1991). The merger of developmental theory and method. In P. Van Geert & L. P. Mos (Eds.), Annals of theoretical psychology: Vol. VII (pp. 129-138).Google Scholar
  57. Zeger, S. L., & Harlow, S. D. (1987). Mathematical models from laws of growth to tools for biologic analysis: Fifty years of growth. Growth, 51, 1-21.Google Scholar
  58. Zill. N. (1990). Behavior problem index based on parent report. In National Health Interview Survey. Child Health Supplement. Washington, DC: National Center for Health Statistics.Google Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of PsychologyUniversity of California, DavisDavisUSA

Personalised recommendations