Longitudinal Research with Latent Variables pp 245-273 | Cite as
Five Steps in Latent Curve and Latent Change Score Modeling with Longitudinal Data
- 37 Citations
- 4.5k Downloads
Abstract
This paper describes a set of applications of one class of longitudinal growth analysis - latent curve (LCM) and latent change score (LCS) analysis using structural equation modeling (SEM) techniques. These techniques are organized in five sections based on Baltes & Nesselroade (1979). (1) Describing the observed and unobserved longitudinal data. (2) Characterizing the developmental shape of both individuals and groups. (3) Examining the predictors of individual and group differences in developmental shapes. (4) Studying dynamic determinants among variables over time. (5) Studying group differences in dynamic determinants among variables over time. To illustrate all steps, we present SEM analyses of a relatively large set of data from the National Longitudinal Survey of Youth (NLSY). The inclusion of all five aspects of latent curve modeling is not often used in longitudinal analyses, so we discuss why more efforts to include all five are needed in developmental research.
Keywords
Structural Equation Modeling Reading Comprehension Antisocial Behavior Latent Curve Latent Growth CurvePreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The work described here has been supported since 1980 by the National Institute on Aging (Grant#AG-07137). Kevin Grimm was supported by a National Science Foundation REECE Program Grant (DRL-0815787) and the National Center for Research on Early Childhood Education, Institute of Education Sciences, U.S. Department of Education (R305A06021). We are especially grateful to the assistance of our close friend and colleague, John R. Nesselroade. This research was also influenced by discussions with many others, including Paul Baltes, Steven Boker, Emilio Ferrer, Paolo Ghisletta, Fumiaki Hamagami, John Horn, Bill Meredith, and Carol Prescott.
References
- Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1-39). New York: Academic Press.Google Scholar
- Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Experimental Aging Research, 21, 77-93.CrossRefGoogle Scholar
- Browne, M., & du Toit, S. H. C. (1991). Models for learning data. In L. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47-68). Washington, DC: APA Press.Google Scholar
- Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.Google Scholar
- Cattell, R. B. (1980). The separation and evaluation of personal and environmental contributions to behavior by the person-centered model (PCER). Multivariate Behavioral Research, 15, 371-402.CrossRefGoogle Scholar
- Cnaan, A., Laird, N. M., & Slasor, P. (1997). Using the general linear mixed model to analyze unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16, 2349-2380.CrossRefGoogle Scholar
- Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation design and analysis issues for field settings. Skokie, IL: Rand-McNally.Google Scholar
- Cudeck, R., & Klebe, K. J. (2002). Multiphase mixed-effects models for repeated measures data. Psychological Methods, 7, 41-63.CrossRefGoogle Scholar
- Dunn, L. M., & Markwardt, F. C. (1970). Peabody Individual Achievement Test manual. Circle Pines, MN: American Guidance Service.Google Scholar
- Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. International Journal of Behavioral Development, 31, 328-339.CrossRefGoogle Scholar
- Grimm, K. J., & McArdle, J. J. (2005). A note on the computer generation of structural expectations. In F. Dansereau & F. Yammarino (Eds.), Multi-level issues in strategy and research methods (Volume 4 of Research in multi-level issues) (pp. 335-372). Amsterdam: JAI Press/Elsevier.Google Scholar
- Hamagami, F., & McArdle, J. J. (2007). Dynamic extensions of latent difference score models. In S. M. Boker & M. J. Wenger, Data analytic techniques for dynamical systems. Notre Dame series on quantitative methodology (pp. 47-85). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
- Horn, J. L. (1973). On extension analysis and its relation to correlations between variables and factor scores. Multivariate Behavioral Research, 8, 477-489.CrossRefGoogle Scholar
- Jöreskog, K. G., & Sörbom, D. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.zbMATHGoogle Scholar
- Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.zbMATHCrossRefGoogle Scholar
- Littell, R. C., Miliken, G. A., Stoup, W. W., & Wolfinger, R. D. (1996). SAS system for mixed models. Cary, NC: SAS institute.Google Scholar
- Little, R. J. A. (1995). Modeling the dropout mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112-1121.zbMATHCrossRefMathSciNetGoogle Scholar
- Magnussen, D, (2003). Person-Centered methodology. In S. C. Peck & R. W. Roeser (Eds.), Person-centered approaches to studying development in context. San Francisco: Jossey-Bass.Google Scholar
- McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology: Vol. 2 (pp. 561-614). New York: Plenum.Google Scholar
- McArdle, J. J. (1989). Structural modeling experiments using multiple growth functions. In P. Ackerman, R. Kanfer & R. Cudeck (Eds.), Learning and individual differences: Abilities, motivation, and methodology (pp. 71-117). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
- McArdle, J. J. (1994). Structural factor analysis experiments with incomplete data. Multivariate Behavioral Research, 29, 409-454.CrossRefGoogle Scholar
- McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analyses. In R. Cudeck, S. du Toit & D. Sörbom (Eds.), Structural equation modeling: Present and future (pp. 342-380). Lincolnwood, IL: Scientific Software International.Google Scholar
- McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. In J. J. McArdle & A. Maydeu-Olivares (Eds.), Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 225-273). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
- McArdle, J. J. (2007). Dynamic structural equation modeling in longitudinal experimental studies. In K. van Montfort, J. Oud & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 159-188). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
- McArdle, J. J. (2009). Latent variable modeling of differences and changes. Annual Review of Psychology, 60, 577-605.CrossRefGoogle Scholar
- McArdle, J. J., & Bell, R. Q. (2000). An introduction to latent growth models for developmental data analysis. In T. D. Little, K. U. Schnabel & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 69-107). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
- McArdle, J. J., Caja-Ferrer, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115-142.CrossRefGoogle Scholar
- McArdle, J. J., & Cattell, R. B. (1994). Structural equation models of factorial invariance in parallel proportional profiles and oblique confactor. Multivariate Behavioral Research, 20, 63-113.CrossRefGoogle Scholar
- McArdle, J. J., & Epstein, D. B. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110-133.CrossRefGoogle Scholar
- McArdle, J. J., & Hamagami, F. (1992). Modeling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research, 18, 145-166.Google Scholar
- McArdle, J. J., & Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change. (pp. 137-176). Washington, DC: APA Press.Google Scholar
- McArdle, J. J., Hamagami, F., Meredith, W., & Bradway, K. P. (2001). Modeling the dynamic hypotheses of Gf-Gc theory using longitudinal life-span data. Learning and Individual Differences, 12, 53-79.CrossRefGoogle Scholar
- McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. The British Journal of Mathematical and Statistical Psychology, 37, 234-251.zbMATHGoogle Scholar
- McArdle, J. J., & Nesselroade, J. R. (1994). Using multivariate data to structure developmental change. In S. H. Cohen & H. W. Reese (Eds.), Life-span developmental psychology: Methodological innovations (pp. 223-267). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
- McArdle, J. J., & Nesselroade, J. R. (2003). Growth curve analyses in contemporary psychological research. In J. Schinka & W. Velicer (Eds.), Comprehensive handbook of psychology: Vol. 2. Research methods in psychology (pp. 447-480). New York: Pergamon Press.Google Scholar
- McArdle, J. J., Small, B. J., Backman, L., & Fratiglioni, L. (2005). Longitudinal models of growth and survival applied to the early detection of Alzheimer’s Disease. Journal of Geriatric Psychiatry and Neurology, 18, 234-241.CrossRefGoogle Scholar
- Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107-122.CrossRefGoogle Scholar
- Muthén, B., & Muthén, L. (2000). Integrating person-centered and variable-centered analysis: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882-891.CrossRefGoogle Scholar
- Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469.zbMATHCrossRefGoogle Scholar
- Miyazaki, Y., & Raudenbush, S. W. (2000). Tests for linkage of multiple cohorts in an accelerated longitudinal design. Psychological Methods, 5, 24-63.CrossRefGoogle Scholar
- Nagin, D. (1999). Analyzing developmental trajectories: Semi-parametric, group-based approach. Psychological Methods, 4, 139-177.CrossRefGoogle Scholar
- Nesselroade, J. R., & Baltes, P. B. (Eds.) (1979). Longitudinal research in the study of behavior and development. New York: Academic Press.Google Scholar
- Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235-265). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
- Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199-215.CrossRefMathSciNetGoogle Scholar
- Ram, N., & Grimm, K. J. (2007). Using simple and complex growth models to articulate developmental change: Matching method to theory. International Journal of Behavioral Development, 31, 303-316.CrossRefGoogle Scholar
- Rao, C. R. (1958). Some statistical methods for the comparison of growth curves. Biometrics, 14, 1-17.zbMATHCrossRefGoogle Scholar
- Rogosa, D. R. (1978). Some results for the Johnson-Neyman technique. Dissertation Abstracts International, 38(9-A).Google Scholar
- Rogosa, D., & Willett, J. B. (1985). Understanding correlates of change by modeling individual differences in growth. Psychometrika, 50, 203-228.CrossRefMathSciNetGoogle Scholar
- Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 24, 323-355.Google Scholar
- Sliwinski, M., & Buschke, H. (1999). Cross-sectional and longitudinal relationships among age, cognition, and processing speed. Psychology and Aging, 14, 18-33.CrossRefGoogle Scholar
- Sullivan, E. V., Rosenbloom, M. J., Lim, K. O., & Pfefferman, A. (2000). Longitudinal changes in cognition, gait, balance in abstinent and relapsed alcoholic men: Relationships to changes in brain structure. Neuropsychology, 14, 178-188.CrossRefGoogle Scholar
- Verbeke, G., Molenberghs, G., Krickeberg, K., & Fienberg, S. (Eds.) (2000). Linear mixed models for longitudinal data. New York: Springer Verlag.zbMATHGoogle Scholar
- Wedel, M., & DeSarbo, W. S. (1995). A mixture likelihood approach for generalized linear models. Journal of Classification, 12, 21-55.zbMATHCrossRefGoogle Scholar
- Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363-381.CrossRefGoogle Scholar
- Wohlwill, J. F. (1973). The study of behavioral development. Oxford, England: Academic Press.Google Scholar
- Wohlwill, J. F. (1991). The merger of developmental theory and method. In P. Van Geert & L. P. Mos (Eds.), Annals of theoretical psychology: Vol. VII (pp. 129-138).Google Scholar
- Zeger, S. L., & Harlow, S. D. (1987). Mathematical models from laws of growth to tools for biologic analysis: Fifty years of growth. Growth, 51, 1-21.Google Scholar
- Zill. N. (1990). Behavior problem index based on parent report. In National Health Interview Survey. Child Health Supplement. Washington, DC: National Center for Health Statistics.Google Scholar