Continuous Time Modeling of Panel Data by means of SEM

  • Johan H. L. OudEmail author
  • Marc J. M. H. Delsing


After a brief history of continuous time modeling and its implementation in panel analysis by means of structural equation modeling (SEM), the problems of discrete time modeling are discussed in detail. This is done by means of the popular cross-lagged panel design. Next, the exact discrete model (EDM) is introduced, which accounts for the exact nonlinear relationship between the underlying continuous time model and the resulting discrete time model for data analysis. In addition, a linear approximation of the EDM is discussed: the approximate discrete model (ADM). It is recommended to apply the ADM-SEM procedure by means of a SEM program such as LISREL in the model building phase and the EDM-SEM procedure by means of Mx in the final model estimation phase. Both procedures are illustrated in detail by two empirical examples: Externalizing and Internalizing Problem Behavior in children; Individualism, Nationalism and Ethnocentrism in the Flemish electorate.


Structural Equation Modeling Continuous Time Observation Interval Externalize Problem Behavior Continuous Time Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, L. (1974). Stochastic differential equations. New York: Wiley.zbMATHGoogle Scholar
  2. Arminger, G. (1986). Linear stochastic differential equations for panel data with unobserved variables. In N. B. Tuma (Ed.), Sociological methodology (pp. 187-212). Washington: Jossey-Bass.Google Scholar
  3. Bartlett, M. S. (1946). On the theoretical specification and sampling properties of autocorrelated time-series. Journal of the Royal Statistical Society (Supplement), 7, 27-41.CrossRefMathSciNetGoogle Scholar
  4. Blalock, H. M., Jr. (1969). Theory construction: From verbal to mathematical formulations. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  5. Bergstrom, A. R. (1966). Nonrecursive models as discrete approximations to systems of stochastic differential equations. Econometrica, 34, 173-182.zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bergstrom, A. R. (1984). Continuous time stochastic models and issues of aggregation over time. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics: Vol. 2 (pp. 1145-1212). Amsterdam: North-Holland.Google Scholar
  7. Bergstrom, A. R. (1988). The history of continuous-time econometric models. Econometric Theory, 4, 365-383.MathSciNetGoogle Scholar
  8. Boker, S., Neale, M., & Rausch, J. (2004). Latent differential equation modeling with multivariate multi-occasion indicators. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Recent developments on structural equations models: Theory and applications (pp. 151-174). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  9. Browne, M. W. & R. Cudeck (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. Scott Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park: Sage.Google Scholar
  10. Bui, K. V. T., Ellickson, P. L., & Bell, R. M. (2000). Cross-lagged relationships among adolescent problem drug use, delinquent behavior, and emotional distress. Journal of Drug Issues, 30, 283-303.Google Scholar
  11. Burke, J. D., Loeber, R., Lahey, B. B., & Rathouz, P. J. (2005). Developmental transitions among affective and behavioral disorders in adolescent boys. Journal of Child Psychology and Psychiatry, 46, 1200-1210.CrossRefGoogle Scholar
  12. Capaldi, D. M. (1992). Co-occurrence of conduct problems and depressive symptoms in early adolescent boys: II. A 2-year follow-up at grade 8. Development and Psychopathology, 4, 125-144.CrossRefGoogle Scholar
  13. Carlson, G. A., & Cantwell, D. P. (1980). Unmasking masked depression in children and adolescents. American Journal of Psychiatry, 137, 445-449.Google Scholar
  14. Coleman, J. S. (1968). The mathematical study of change. In H.M. Blalock, Jr. & A. Blalock (Eds.), Methodology in social research (pp. 428-478). New York: McGraw-Hill.Google Scholar
  15. De Bruyn, E. E. J., Scholte, R. H. J., & Vermulst, A. A. (2005). Psychometric analyses of the Nijmegen problem behavior list (NPBL): A research instrument for assessing problem behavior in community samples using self- and other reports of adolescents and parents. Nijmegen, The Netherlands: Institute of Family and Child Studies, Radboud University NijmegenGoogle Scholar
  16. Delsing, M. J. M. H., Oud, J. H. L., van Aken, M. A. G., De Bruyn, E. E. J., & Scholte, R. J. H. (2005). Family loyalty and adolescent problem behavior: The validity of the family group effect. Journal of Research on Adolescence, 15, 127-150. CrossRefGoogle Scholar
  17. Gold, M., Mattlin, M., & Osgood, D. W. (1989). Background characteristics and response to treatment of two types of institutionalized delinquent boys. Criminal Justice and Behaviour, 16, 5-33.CrossRefGoogle Scholar
  18. Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58, 80-92.CrossRefGoogle Scholar
  19. Haselager, G. J. T., & van Aken, M. A. G. (1999). Codebook of the research project Family and Personality: Vol. 1. First measurement wave. Nijmegen, The Netherlands: University of Nijmegen, Faculty of Social Science.Google Scholar
  20. Homans, G. C. (1950). The human group. New York: Harcourt, Brace & World.Google Scholar
  21. Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In Krishnaiah, P. R. (Ed.), Applications of statistics (pp. 265-287). Amsterdam: North-Holland.Google Scholar
  22. Jöreskog, K. G., & Sörbom, D. (1976). LISREL III: Estimation of linear structural equation systems by maximum likelihood methods: A FORTRAN IV program. Chicago: National Educational Resources.Google Scholar
  23. Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.Google Scholar
  24. Kuo, H.-H. (2006). Introduction to stochastic integration. New York: Springer.zbMATHGoogle Scholar
  25. Neale, M.C. (2000). Individual fit, heterogeneity, and missing data in multigroup structural equation modeling. In T.D. Little, K.U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data (pp. 219-240). Mahwah NJ: Lawrence Erlbaum.Google Scholar
  26. Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2006). Mx: Statistical Modeling (7th ed.). Richmond, VA: Department of Psychiatry.Google Scholar
  27. Neiderhiser, J. M., Reiss, D., Hetherington, E. M., & Plomin, R. (1999). Relationships between parenting and adolescent adjustment over time: Genetic and environmental contributions. Developmental Psychology, 35, 680-692.CrossRefGoogle Scholar
  28. Oud, J. H. L. (1978). Systeem-methodologie in sociaal-wetenschappelijk onderzoek [Systems methodology in social science research]. Doctoral dissertation. Nijmegen: Alfa.Google Scholar
  29. Oud, J. H. L. (2007a). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 19-39). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  30. Oud, J. H. L. (2007b). Continuous time modeling of reciprocal effects in the cross-lagged panel design. In S.M. Boker & M.J. Wenger (Eds.), Data analytic techniques for dynamical systems in the social and behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  31. Oud, J. H. L., & Jansen, R. A. R. G. (1996). Nonstationary longitudinal LISREL model estimation from incomplete panel data using EM and the Kalman smoother. In U. Engel & J. Reinecke (Eds.), Analysis of change: Advanced techniques in panel data analysis (pp. 135-159). Berlin: Walter de Gruyter.Google Scholar
  32. Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199-215.CrossRefMathSciNetGoogle Scholar
  33. Oud, J. H. L., Jansen, R. A. R. G., van Leeuwe, J.F.J., Aarnoutse, C. A. J., & Voeten, M. J. M. (1999). Monitoring pupil development by means of the Kalman filter and smoother based upon SEM state space modeling. Learning and Individual Differences, 10, 121-136.CrossRefGoogle Scholar
  34. Oud, J. H. L., van Leeuwe, J. F. J, & Jansen, R. A. R. G., (1993). Kalman filtering in discrete and continuous time based on longitudinal LISREL models. In J. H. L. Oud & A. W. van Blokland-Vogelesang (Eds.), Advances in longitudinal and multivariate analysis in the behavioral sciences (pp.3-26). Nijmegen: ITS.Google Scholar
  35. Oud, J. H. L., & Singer, H. (2008). Continuous time modeling of panel data: SEM versus filter techniques. Statistica Neerlandica, 62, 4-28.zbMATHMathSciNetCrossRefGoogle Scholar
  36. Overbeek, G. J., Vollebergh, W. A. M., Meeus, W. H. J., Luijpers, E. T. H., & Engels, R. C. M. E. (2001). Course, co-occurence and longitudinal associations between emotional disturbance and delinquency from adolescence to young adulthood: A six-year three-wave study. Journal of Youth and Adolescence, 30, 401-426.CrossRefGoogle Scholar
  37. Phillips, P. C. B. (1993). The ET Interview: A. R. Bergstrom. In P. C. B. Phillips (Ed.), Models, methods, and applications of econometrics (pp. 12-31). Cambridge, MA: Blackwell.Google Scholar
  38. Rueter, M. A., & Conger, R. D. (1998). Reciprocal influences between parenting and adolescent problem-solving behavior. Developmental Psychology, 34, 1470-1482.CrossRefGoogle Scholar
  39. Simon, H. A. (1952). A formal theory of interaction in small groups. American Sociological Review, 17, 202-211.CrossRefGoogle Scholar
  40. Singer, H. (1990). Parameterschätzung in zeitkontinuierlichen dynamischen Systemen [Parameter estimation in continuous time dynamic systems]. Konstanz: Hartung-Gorre.Google Scholar
  41. Singer, H. (1991). LSDE - A program package for the simulation, graphical display, optimal filtering and maximum likelihood estimation of linear stochastic differential equations: User’s guide. Meersburg: Author.Google Scholar
  42. Singer, H. (1993). Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. Journal of Time Series Analysis, 14, 527-545.zbMATHCrossRefMathSciNetGoogle Scholar
  43. Singer, H. (1995). Analytical score function for irregularly sampled continuous time stochastic processes with control variables and missing values. Econometric Theory, 11, 721–735.CrossRefMathSciNetGoogle Scholar
  44. Singer, H. (1998). Continuous panel models with time dependent parameters. Journal of Mathematical Sociology, 23, 77-98.zbMATHGoogle Scholar
  45. Toharudin, T., Oud, J. H. L., & Billiet, J. B. (2008). Assessing the relationships between Nationalism, Ethnocentrism, and Individualism in Flanders using Bergstrom’s approximate discrete model. Statistica Neerlandica, 62, 83-103.zbMATHMathSciNetGoogle Scholar
  46. Tuma, N. B., & Hannan, M. (1984), Social dynamics: Models and methods. New York:Academic Press.Google Scholar
  47. Vuchinich, S., Bank, L., & Patterson, G. R. (1992). Parenting, peers, and the stability of antisocial behavior in preadolescent boys. Developmental Psychology, 38, 510-521.CrossRefGoogle Scholar
  48. Wothke, W. (2000). Longitudinal and multigroup modeling with missing data. In T.D. Little, K.U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data (pp. 219-240). Mahwah NJ: Lawrence Erlbaum.Google Scholar
  49. Zadeh, L. A., & Desoer, C. A. (1963). Linear system theory: The state space approach. New York: McGraw-Hill.zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Behavioural Science InstituteRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Praktikon, Radboud University NijmegenNijmegenThe Netherlands

Personalised recommendations