Advertisement

Longitudinal Research Using Mixture Models

  • Jeroen K. VermuntEmail author
Chapter

Abstract

This chapter provides a state-of-the-art overview of the use of mixture and latent class models for the analysis of longitudinal data. It first describes the three basic types mixture models for longitudinal data: the mixture growth, mixture Markov, and latent Markov model. Subsequently, it presents an integrating framework merging various recent developments in software and algorithms, yielding mixture models for longitudinal data that can (1) not only be used with categorical, but also with continuous response variables (as well as combinations of these), (2) be used with very long time series, (3) include covariates (which can be numeric or categorical, as well as time-constant or time-varying), (4) include parameter restrictions yielding interesting measurement models, and (5) deal with missing values (which is very important in longitudinal research). Moreover, it discusses other advanced models, such as latent Markov models with dependent classification errors across time points, mixture growth and latent Markov models with random effects, and latent Markov models for multilevel data and multiple processes. The appendix shows how the presented models can be defined using the Latent GOLD syntax system (Vermunt and Magidson, 2005, 2008).

Keywords

Latent Variable Markov Model Mixture Model Latent Class Unobserved Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. (2002). Categorical data analysis. New York: Wiley.zbMATHCrossRefGoogle Scholar
  2. Aitkin, M. (1999). A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 218-234.CrossRefMathSciNetGoogle Scholar
  3. Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41, 164-171.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Bartolucci, F., Pennoni, F., & Francis, B. (2007). A latent Markov model for detecting patterns of criminal activity. Journal of the Royal Statistical Society, Ser. A, 170, 115-132.CrossRefMathSciNetGoogle Scholar
  5. Bassi, F., Hagenaars, J. A., Croon, M. A., & Vermunt, J. K. (2000). Estimating true changes when categorical panel data are affected by uncorrelated and correlated errors. Sociological Methods and Research, 29, 230-268.CrossRefGoogle Scholar
  6. Bergma, W., Croon, M. A., & Hagenaars, J. A. (2009). Marginal models for dependent, clustered and longitudinal categorical data. Dordrecht, NL: Springer.Google Scholar
  7. Böckenholt, U. (2005). A latent Markov model for the analysis of longitudinal data collected in continuous time: States, durations, and transitions. Psychological Methods, 10, 65-82.CrossRefGoogle Scholar
  8. Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27, 131-157.CrossRefGoogle Scholar
  9. Dayton C.M., & Macready, G. B. (1988). Concomitant-variable latent class models. Journal of the American Statistical Association, 83, 173-178.CrossRefMathSciNetGoogle Scholar
  10. Dias, J. G., & Vermunt, J. K. (2007). Latent class modeling of website users’ search patterns: Implications for online market segmentation. Journal of Retailing and Consumer Services, 14, 359-368.CrossRefGoogle Scholar
  11. Dias, J. G., Vermunt, J. K., & Ramos, S. (2009). Mixture hidden Markov models in finance research. In A. Fink, L. Berthold, W. Seidel, & A. Ultsch (Eds.), Advances in data analysis, data handling and business intelligence. Berlin-Heidelberg: SpringerGoogle Scholar
  12. Diggle, P. J., Liang, K. Y., & Zeger (1994), S. L. Analysis of longitudinal data. Oxford: Clarendon Press.Google Scholar
  13. Eid, M., & Langeheine, R. (1999). Measuring consistency and occasion specificity with latent class models: A new model and its application to the measurement of affect. Psychological Methods, 4, 100-116.CrossRefGoogle Scholar
  14. Elliott, D. S., Huizinga, D., & Menard, S. (1989). Multiple problem youth: Delinquency, substance use, and mental health problems. New York: Springer-Verlag.Google Scholar
  15. Everitt, B. S., & Hand, D. J. (1981). Finite mixture distributions. London: Chapman & Hall.zbMATHGoogle Scholar
  16. Fay, R. E. (1986). Causal models for patterns of nonresponse. Journal of the American Statistical Association, 81, 354-365.CrossRefGoogle Scholar
  17. Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York, NY: Springer.zbMATHGoogle Scholar
  18. Goldfeld, S., & Quandt, R. (1973). A Markov model for switching regressions. Journal of Econometrics, 1, 3-16.zbMATHCrossRefGoogle Scholar
  19. Goodman, L. A. (1961). Statistical methods for the mover-stayer model. Journal of the American Statistical Association, 56, 841-868.CrossRefMathSciNetGoogle Scholar
  20. Goodman, L. A. (1974). The analysis of systems of qualitative variables when some of the variables are unobservable: Part I - A modified latent structure approach. American Journal of Sociology, 79, 1179-1259.CrossRefGoogle Scholar
  21. Hagenaars, J. A. (1988). Latent structure models with direct effects between indicators: Local dependence models. Sociological Methods and Research, 16, 379-405.CrossRefGoogle Scholar
  22. Hagenaars, J. A. (1990). Categorical longitudinal data: Loglinear analysis of panel, trend and cohort data. Newbury Park: Sage.Google Scholar
  23. Hadgu, A., & Qu, Y. (1998). A biomedical application of latent class models with random effects. Applied Statistics, 47, 603-616.zbMATHGoogle Scholar
  24. Hedeker, D., & Gibbons, R. D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157-176.CrossRefGoogle Scholar
  25. Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Thousand Oakes, CA: Sage Publications.Google Scholar
  26. Kaplan, D. (2005). Finite mixture dynamic regression modeling of panel data with implications for dynamic response analysis. Journal of Educational and Behavioral Statistics, 30, 169-187.CrossRefGoogle Scholar
  27. Langeheine, R., & van de Pol, F. (2002). Latent Markov chains. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis. (pp. 304-341). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  28. Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin.zbMATHGoogle Scholar
  29. Little, R.J., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: Wiley.zbMATHGoogle Scholar
  30. Magidson, J., Vermunt, J. K., & Tran, B. (2009). Using a mixture latent Markov model to analyze longitudinal U.S. employment data involving measurement error. In K. Shigemasu, A. Okada, T. Imaizumi, & T. Hoshino (Eds.), New Trends in Psychometrics (pp. 235-242). Tokyo: Universal Academy Press.Google Scholar
  31. Manzoni, A., Vermunt, J.K., Luijkx, R., & Muffels, R. (in preparation). Memory bias in retrospectively collected employment careers: A model based approach to correct for measurement error.Google Scholar
  32. McDonald, I. L., & Zucchini, W. (1997), Hidden Markov and other models for discrete valued time series. London: Chapman and Hall.Google Scholar
  33. McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.zbMATHCrossRefGoogle Scholar
  34. Mooijaart, A., & van Montfort, K. (2007). Latent Markov models for catagorical variables and time-dependent covariates. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences. (pp. 1-18). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  35. Muthén, B. ( 2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345-368). Thousand Oakes, CA: Sage.Google Scholar
  36. Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric group-based approach. Psychological Methods, 4, 139-157.CrossRefGoogle Scholar
  37. Paas, L. J., Vermunt, J. K., & Bijmolt, T. H, (2007). Discrete-time discrete-state latent Markov modelling for assessing and predicting household acquisitions of financial products. Journal of the Royal Statistical Society, Ser. A (Statistics in Society), 170, 955-974.CrossRefMathSciNetGoogle Scholar
  38. Palardy, G., & Vermunt, J. K. (in press). Multilevel growth mixture models for classifying group-level observations. Journal of Educational and Behavioral Statistics.Google Scholar
  39. Pavlopoulos, D., Muffels, R., & Vermunt, J. K. (2009). Training and low-pay mobility: The case of the UK, the Netherlands and Germany. Labour, 21, 37-59.CrossRefGoogle Scholar
  40. Poulsen, C. S. (1990). Mixed Markov and latent Markov modelling applied to brand choice behaviour. International Journal of Research in Marketing, 7, 519.CrossRefGoogle Scholar
  41. Rijmen, F., Vansteelandt, K., & de Boeck, P. (2008). Latent class models for diary method data: Parameter estimation by local computations. Psychometrika, 73, 167-182.zbMATHCrossRefMathSciNetGoogle Scholar
  42. Schafer, J. L. (1997). Statistical analysis with incomplete data. London: Chapman & Hall.Google Scholar
  43. Schmittmann, V. D., Dolan, C.V., van der Maas, H. L. J., & Neale, M. C. (2005). Discrete latent Markov models for normally distributed response data. Multivariate Behavioral Research, 40, 461-488.CrossRefGoogle Scholar
  44. Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. London: Chapman & Hall/CRC.zbMATHGoogle Scholar
  45. van de Pol, F., & de Leeuw, J. (1986). A latent Markov model to correct for measurement error. Sociological Methods and Research, 15, 118-141.CrossRefGoogle Scholar
  46. van de Pol, F., & Langeheine, R. (1990). Mixed Markov latent class models. Sociological Methodology, 213-247.Google Scholar
  47. van der Heijden, P. G. M., Dessens, J., & Böckenholt, U. (1996). Estimating the concomitant variable latent class model with the EM algorithm. Journal of Educational and Behavioral Statistics, 21, 215-229.Google Scholar
  48. Vermunt, J. K. (1997a). Log-linear models for event histories. Thousand Oakes, CA: Sage.Google Scholar
  49. Vermunt, J. K. (1997b). LEM: A general program for the analysis of categorical data: User’s manual. Tilburg, The Netherlands: Tilburg University.Google Scholar
  50. Vermunt, J. K. (2001). The use of latent class models for defining and testing non-parametric and parametric item response theory models. Applied Psychological Measurement, 25, 283-294.CrossRefMathSciNetGoogle Scholar
  51. Vermunt, J. K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213-239.CrossRefGoogle Scholar
  52. Vermunt, J. K. (2004) An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models. Statistica Neerlandica, 58, 220- 233.zbMATHCrossRefMathSciNetGoogle Scholar
  53. Vermunt, J. K. (2007). Growth models for categorical response variables: Standard, latent-class, and hybrid approaches. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and related sciences (pp. 139-158). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  54. Vermunt, J. K., & Georg, W. (2002). Longitudinal data analysis using log-linear path models with latent variables. Metodología de las Ciencias del Comportamiento, 4, 37-53.Google Scholar
  55. Vermunt, J. K., & Hagenaars, J. A. (2004). Ordinal longitudinal data analysis. In R. C. Hauspie, N. Cameron, & L. Molinari (Eds.), Methods in human growth research (pp. 374-393). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  56. Vermunt, J. K., Langeheine, R., & Böckenholt, U. (1999). Latent Markov models with time-constant and time-varying covariates. Journal of Educational and Behavioral Statistics, 24, 178-205.Google Scholar
  57. Vermunt, J. K., & Magidson, J. (2005) Latent GOLD 4.0 user’s guide. Belmont, MA: Statistical Innovations.Google Scholar
  58. Vermunt, J. K., & Magidson, J. (2008). LG-syntax user’s guide: Manual for Latent GOLD 4.5 syntax module. Belmont, MA: Statistical Innovations.Google Scholar
  59. Vermunt, J. K., Tran, B., & Magidson, J. (2008). Latent class models in longitudinal research. In S. Menard (Ed.), Handbook of longitudinal research: Design, measurement, and analysis (pp. 373-385). Burlington, MA: Elsevier.Google Scholar
  60. Vermunt, J. K., & van Dijk, L. (2001). A nonparametric random-coefficients approach: The latent class regression model. Multilevel Modelling Newsletter, 13, 6-13.Google Scholar
  61. Wiggins, L. M. (1973). Panel analysis. Amsterdam: Elsevier.Google Scholar
  62. Wong, C. S, & Li, W.K. (2000). On a mixture autoregressive model. Journal of the Royal Statistical Society, Ser. B, 62, 95-115.zbMATHCrossRefMathSciNetGoogle Scholar
  63. Yu, H. T., & Vermunt, J. K. (in preparation). Multilevel latent Markov model for nested longitudinal discrete data.Google Scholar
  64. Yung, Y. F. (1997). Finite mixtures in confirmatory factor analysis models. Psychometrika, 62, 297-330.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Methodology and StatisticsTilburg UniversityTilburgThe Netherlands

Personalised recommendations