Random Effects Models for Longitudinal Data
- 18 Citations
- 3.1k Downloads
Abstract
Mixed models have become very popular for the analysis of longitudinal data, partly because they are flexible and widely applicable, partly also because many commercially available software packages offer procedures to fit them. They assume that measurements from a single subject share a set of latent, unobserved, random effects which are used to generate an association structure between the repeated measurements. In this chapter, we give an overview of frequently used mixed models for continuous as well as discrete longitudinal data, with emphasis on model formulation and parameter interpretation. The fact that the latent structures generate associations implies that mixed models are also extremely convenient for the joint analysis of longitudinal data with other outcomes such as dropout time or some time-to-event outcome, or for the analysis of multiple longitudinally measured outcomes. All models will be extensively illustrated with the analysis of real data.
Keywords
Linear Mixed Model Random Effect Model Generalize Linear Mixed Model Generalize Estimate Equation American Statistical AssociationPreview
Unable to display preview. Download preview PDF.
References
- Aerts, M., Geys, H., Molenberghs, G., & Ryan, L. (2002). Topics in modelling of clustered data. London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
- Afifi, A., & Elashoff, R. (1966). Missing observations in multivariate statistics I: Review of the literature. Journal of the American Statistical Association, 61, 595-604.MathSciNetCrossRefGoogle Scholar
- Alonso, A., Geys, H., Molenberghs, G., & Vangeneugden, T. (2003). Validation of surrogate markers in multiple randomized clinical trials with repeated measurements. Biometrical Journal, 45, 931-945.MathSciNetCrossRefGoogle Scholar
- Alonso, A., & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory perspective. Biometrics, 63, 180-186.zbMATHMathSciNetCrossRefGoogle Scholar
- Alonso, A., Molenberghs, G., Geys, H., & Buyse, M. (2005). A unifying approach for surrogate marker validation based on Prentice’s criteria. Statistics in Medicine, 25, 205-211.MathSciNetCrossRefGoogle Scholar
- Alonso, A., Molenberghs, G., Burzykowski, T., Renard, D., Geys, H., Shkedy, Z., Tibaldi, F., Abrahantes, J., & Buyse, M. (2004). Prentice’s approach and the meta analytic paradigm: a reflection on the role of statistics in the evaluation of surrogate endpoints. Biometrics, 60, 724-728.zbMATHMathSciNetCrossRefGoogle Scholar
- Altham, P. M. E. (1978). Two generalizations of the binomial distribution. Applied Statistics, 27, 162-167.zbMATHMathSciNetCrossRefGoogle Scholar
- Andersen, P., Borgan, O., Gill, R., & Keiding, N. (1993). Statistical models based on counting processes. New York: Springer.zbMATHGoogle Scholar
- Arnold, B. C., & Strauss, D. (1991). Pseudolikelihood estimation: some examples. Sankhya: The Indian Journal of Statistics - Series B, 53, 233-243.zbMATHMathSciNetGoogle Scholar
- Bahadur, R. R. (1961). A representation of the joint distribution of responses to n dichotomous items. In H. Solomon (Ed.), Studies in item analysis and prediction, Stanford Mathematical Studies in the Social Sciences VI. Stanford, CA: Stanford University Press.Google Scholar
- Beunckens, C., Sotto, C., & Molenberghs, G. (2007). A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. Computational Statistics and Data Analysis, 52, 1533-1548.MathSciNetCrossRefGoogle Scholar
- Brant, L. J., & Fozard, J. L. (1990). Age changes in pure-tone hearing thresholds in a longitudinal study of normal human aging. Journal of the Acoustical Society of America, 88, 813-820.CrossRefGoogle Scholar
- Breslow, N. E., & Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9-25.zbMATHCrossRefGoogle Scholar
- Brown, E., & Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics, 59, 221-228.MathSciNetCrossRefGoogle Scholar
- Brown, E., Ibrahim, J., & DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics, 61, 64-73.zbMATHMathSciNetCrossRefGoogle Scholar
- Burzykowski, T., Molenberghs, G., & Buyse, M. (2004). The validation of surrogate endpoints using data from randomized clinical trials: a case-study in advanced colorectal cancer. Journal of the Royal Statistical Society, Series A, 167, 103-124.MathSciNetGoogle Scholar
- Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints. New York: Springer.zbMATHCrossRefGoogle Scholar
- Burzykowski, T., Molenberghs, G., Buyse, M., Geys, H., & Renard, D. (2001). Validation of surrogate endpoints in multiple randomized clinical trials with failure time end points. Applied Statistics, 50, 405-422.zbMATHMathSciNetGoogle Scholar
- Buyse, M., & Molenberghs, G. (1998). The validation of surrogate endpoints in randomized experiments. Biometrics, 54, 1014-1029.zbMATHCrossRefGoogle Scholar
- Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics, 1, 49-67.zbMATHCrossRefGoogle Scholar
- Cardiac Arrhythmia Suppression Trial (CAST) Investigators (1989). Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infraction. New England Journal of Medicine, 321, 406-412.CrossRefGoogle Scholar
- Catalano, P. J. (1997). Bivariate modelling of clustered continuous and ordered categorical outcomes. Statistics in Medicine, 16, 883-900.CrossRefGoogle Scholar
- Catalano, P. J., & Ryan, L. M. (1992). Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association, 87, 651-658.CrossRefGoogle Scholar
- Chakraborty, H., Helms, R. W., Sen, P. K., & Cohen, M. S. (2003). Estimating correlation by using a general linear mixed model: Evaluation of the relationship between the concentration of HIV-1 RNA in blood and semen. Statistics in Medicine, 22, 1457-1464.CrossRefGoogle Scholar
- Chi, Y.-Y., & Ibrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data. Biometrics, 62, 432-445.zbMATHMathSciNetCrossRefGoogle Scholar
- Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141-151.zbMATHMathSciNetCrossRefGoogle Scholar
- Cover, T., & Tomas, J. (1991). Elements of information theory. New York: Wiley.zbMATHCrossRefGoogle Scholar
- Cox, N. R. (1974). Estimation of the correlation between a continuous and a discrete variable. Biometrics, 30, 171-178.zbMATHMathSciNetCrossRefGoogle Scholar
- Cox, D. R., & Wermuth, N. (1992). Response models for mixed binary and quantitative variables. Biometrika, 79, 441-461.zbMATHMathSciNetCrossRefGoogle Scholar
- Cox, D. R., & Wermuth, N. (1994a). A note on the quadratic exponential binary distribution. Biometrika, 81, 403-408.zbMATHMathSciNetCrossRefGoogle Scholar
- Cox, D. R., & Wermuth, N. (1994b). Multivariate dependencies: Models, analysis and interpretation. London: Chapman & Hall.Google Scholar
- Dale, J. R. (1986). Global cross ratio models for bivariate, discrete, ordered responses. Biometrics, 42, 909-917.CrossRefGoogle Scholar
- Daniels, M. J., & Hughes, M. D. (1997). Meta-analysis for the evaluation of potential surrogate markers. Statistics in Medicine, 16, 1515-1527.CrossRefGoogle Scholar
- De Backer, M., De Keyser, P., De Vroey, C., & Lesaffre, E. (1996). A 12-week treatment for dermatophyte toe onychomycosis: terbinafine 250mg/day vs. itraconazole 200mg/day–a double-blind comparative trial. British Journal of Dermatology, 134, 16-17.Google Scholar
- DeGruttola, V., & Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. Biometrics, 50, 1003-1014.CrossRefGoogle Scholar
- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1-38.zbMATHMathSciNetGoogle Scholar
- Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data. New York: Oxford University Press.Google Scholar
- Ding, J., & Wang, J.-L. (2008). Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics, 64, 546-556.zbMATHMathSciNetCrossRefGoogle Scholar
- Dobson, A., & Henderson, R. (2003). Diagnostics for joint longitudinal and dropout time modeling. Biometrics, 59, 741-751.zbMATHMathSciNetCrossRefGoogle Scholar
- Efron, B. (1986). Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association, 81, 709-721.zbMATHMathSciNetCrossRefGoogle Scholar
- Elashoff, R., Li, G., & Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics, 64, 762-771.zbMATHCrossRefMathSciNetGoogle Scholar
- Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models. Heidelberg: Springer.zbMATHGoogle Scholar
- Faucett, C., Schenker, N., & Elashoff, R. (1998). Analysis of censored survival data with intermittently observed time-dependent binary covariates. Journal of the American Statistical Association, 93, 427-437.zbMATHCrossRefGoogle Scholar
- Ferentz, A. E. (2002). Integrating pharmacogenomics into drug development. Pharmacogenomics, 3, 453-467.CrossRefGoogle Scholar
- Fieuws, S., & Verbeke, G. (2004). Joint modelling of multivariate longitudinal profiles: Pitfalls of the random-effects approach. Statistics in Medicine, 23, 3093-3104.CrossRefGoogle Scholar
- Fieuws, S., & Verbeke, G. (2006). Pairwise fitting of mixed models for the joint modelling of multivariate longitudinal profiles. Biometrics, 62, 424-431.zbMATHMathSciNetCrossRefGoogle Scholar
- Fieuws, S., Verbeke, G., Boen, F., & Delecluse, C. (2006). High-dimensional multivariate mixed models for binary questionnaire data. Applied Statistics, 55, 1-12.MathSciNetGoogle Scholar
- Fitzmaurice, G. M., & Laird, N. M. (1995). Regression models for a bivariate discrete and continuous outcome with clustering. Journal of the American Statistical Association, 90, 845-852.zbMATHMathSciNetCrossRefGoogle Scholar
- Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). Applied longitudinal analysis. New York: John Wiley & Sons.zbMATHGoogle Scholar
- Fleming, T. R., & DeMets, D. L. (1996). Surrogate endpoints in clinical trials: are we being misled? Annals of Internal Medicine, 125, 605-613.Google Scholar
- Folk, V. G., & Green, B. F. (1989). Adaptive estimation when the unidimensionality assumption of IRT is violated. Applied Psychological Measurement, 13, 373-389.CrossRefGoogle Scholar
- Follmann, D., & Wu, M. (1995). An approximate generalized linear model with random effects for informative missing data. Biometrics, 51, 151-168.zbMATHMathSciNetCrossRefGoogle Scholar
- Forster, J. J., & Smith, P. W. (1998). Model-based inference for categorical survey data subject to non-ignorable non-response. Journal of the Royal Statistical Society, Series B, 60, 57-70.zbMATHMathSciNetCrossRefGoogle Scholar
- Freedman, L. S., Graubard, B. I., & Schatzkin, A. (1992). Statistical validation of intermediate endpoints for chronic diseases. Statistics in Medicine, 11, 167-178.CrossRefGoogle Scholar
- Gail, M. H., Pfeiffer, R., van Houwelingen, H. C., & Carroll, R. J. (2000). On meta-analytic assessment of surrogate outcomes. Biostatistics, 1, 231-246.zbMATHCrossRefGoogle Scholar
- Galecki, A. (1994). General class of covariance structures for two or more repeated factors in longitudinal data analysis. Communications in Statistics: Theory and Methods, 23, 3105-3119.zbMATHCrossRefGoogle Scholar
- Genest, C., & McKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. American Statistician, 40, 280-283.MathSciNetCrossRefGoogle Scholar
- Geys, H., Molenberghs, G., & Ryan, L. M. (1997). Pseudo-likelihood inference for clustered binary data. Communications in Statistics: Theory and Methods, 26, 2743-2767.zbMATHMathSciNetCrossRefGoogle Scholar
- Geys, H., Molenberghs, G., & Ryan, L. (1999). Pseudolikelihood modeling of multivariate outcomes in developmental toxicology. Journal of the American Statistical Association, 94, 734-745.CrossRefGoogle Scholar
- Gueorguieva, R. (2001). A multivariate generalized linear mixed model for joint modelling of clustered outcomes in the exponential family. Statistical Modelling, 1, 177-193.zbMATHCrossRefGoogle Scholar
- Goldstein, H. (1979). The design and analysis of longitudinal studies. London: Academic Press.zbMATHGoogle Scholar
- Hartley, H. O., & Hocking, R. (1971). The analysis of incomplete data. Biometrics, 27, 7783-7808.CrossRefGoogle Scholar
- Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika, 61, 383-385.zbMATHMathSciNetCrossRefGoogle Scholar
- Harville, D. A. (1976). Extension of the Gauss-Markov theorem to include the estimation of random effects. The Annals of Statistics, 4, 384-395.zbMATHMathSciNetCrossRefGoogle Scholar
- Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72, 320-340.zbMATHMathSciNetCrossRefGoogle Scholar
- Hedeker, D., & Gibbons, R. D. (1994). A random-effects ordinal regression model for multilevel analysis. Biometrics, 50, 933-944.zbMATHCrossRefGoogle Scholar
- Hedeker, D., & Gibbons, R. D. (1996). MIXOR: A computer program for mixed-effects ordinal regression analysis. Computer Methods and Programs in Biomedicine, 49, 157-176.CrossRefGoogle Scholar
- Henderson, R., Diggle, P., & Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics, 1, 465-480.zbMATHCrossRefGoogle Scholar
- Henderson, C. R., Kempthorne, O., Searle, S. R., & Von Krosig, C. N. (1959). Estimation of environmental and genetic trends from records subject to culling. Biometrics, 15, 192-218.zbMATHCrossRefGoogle Scholar
- Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika, 73, 387-396.zbMATHMathSciNetCrossRefGoogle Scholar
- Hsieh, F., Tseng, Y.-K., & Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics, 62, 1037-1043.zbMATHMathSciNetCrossRefGoogle Scholar
- Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced repeated measures models with structured covariance matrices. Biometrics, 42, 805-820.zbMATHMathSciNetCrossRefGoogle Scholar
- Kenward, M. G., & Molenberghs, G. (1998). Likelihood based frequentist inference when data are missing at random. Statistical Science, 12, 236-247.MathSciNetGoogle Scholar
- Krzanowski, W. J. (1988). Principles of multivariate analysis. Oxford: Clarendon Press.zbMATHGoogle Scholar
- Lagakos, S. W., & Hoth, D. F. (1992). Surrogate markers in AIDS: Where are we? Where are we going? Annals of Internal Medicine, 116, 599-601.Google Scholar
- Laird, N. M., & Ware, J. H. (1982). Random effects models for longitudinal data. Biometrics, 38, 963-974.zbMATHCrossRefGoogle Scholar
- Lang, J. B., & Agresti, A. (1994). Simultaneously modeling joint and marginal distributions of multivariate categorical responses. Journal of the American Statistical Association, 89, 625-632.zbMATHCrossRefGoogle Scholar
- Lange, K. (2004). Optimization. New York: Springer.zbMATHGoogle Scholar
- Lesko, L. J., & Atkinson, A. J. (2001). Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annual Review of Pharmacological Toxicology, 41, 347-366.CrossRefGoogle Scholar
- Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22.zbMATHMathSciNetCrossRefGoogle Scholar
- Liang, K.-Y., Zeger, S.L., & Qaqish, B. (1992). Multivariate regression analyses for categorical data. Journal of the Royal Statistical Society, Series B, 54, 3-40.zbMATHMathSciNetGoogle Scholar
- Lin, H., Turnbull, B., McCulloch, C., & Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association, 97, 53-65.zbMATHMathSciNetCrossRefGoogle Scholar
- Lipsitz, S. R., Laird, N. M., & Harrington, D. P. (1991). Generalized estimating equations for correlated binary data: using the odds ratio as a measure of association. Biometrika, 78, 153-160.MathSciNetCrossRefGoogle Scholar
- Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York: John Wiley & Sons.zbMATHGoogle Scholar
- Little, R. J. A., & Schluchter, M. D. (1985). Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika, 72, 497-512.zbMATHMathSciNetCrossRefGoogle Scholar
- Liu, L. C., & Hedeker, D. (2006). A mixed-effects regression model for longitudinal multivariate ordinal data. Biometrics, 62, 261-268.zbMATHMathSciNetCrossRefGoogle Scholar
- MacCallum, R., Kim, C., Malarkey, W., & Kiecolt-Glaser, J. (1997). Studying multivariate change using multilevel models and latent curve models. Multivariate Behavioral Research, 32, 215-253.CrossRefGoogle Scholar
- Mancl, L. A., & Leroux, B. G. (1996). Efficiency of regression estimates for clustered data. Biometrics, 52, 500-511.zbMATHCrossRefGoogle Scholar
- McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London: Chapman & Hall/CRC.zbMATHGoogle Scholar
- Michiels, B., Molenberghs, G., Bijnens, L., Vangeneugden, T., & Thijs, H. (2002). Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout. Statistics in Medicine, 21, 1023-1041.CrossRefGoogle Scholar
- Molenberghs, G., Burzykowski, T., Alonso, A., Assam, P., Tilahun, A., & Buyse, M. (2008). The meta-analytic framework for the evaluation of surrogate endpoints in clinical trials. Journal of Statistical Planning and Inference, 138, 432-449.zbMATHMathSciNetCrossRefGoogle Scholar
- Molenberghs, G., Burzykowski, T., Alonso, A., Assam, P., Tilahun, A., & Buyse, M. (2009). A unified framework for the evaluation of surrogate endpoints in clinical trials. Statistical Methods in Medical Research, 00, 000-000.Google Scholar
- Molenberghs, G., Geys, H., & Buyse, M. (2001). Evaluation of surrogate end-points in randomized experiments with mixed discrete and continuous outcomes. Statistics in Medicine, 20, 3023-3038.CrossRefGoogle Scholar
- Molenberghs, G., & Kenward, M. G. (2007). Missing data in clinical studies. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
- Molenberghs, G., & Lesaffre, E. (1994). Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. Journal of the American Statistical Association, 89, 633-644.zbMATHCrossRefGoogle Scholar
- Molenberghs, G., & Lesaffre, E. (1999). Marginal modelling of multivariate categorical data. Statistics in Medicine, 18, 2237-2255.CrossRefGoogle Scholar
- Molenberghs, G., & Verbeke, G. (2005). Models for discrete longitudinal data. New York: Springer.zbMATHGoogle Scholar
- Morrell, C. H., & Brant, L. J. (1991). Modelling hearing thresholds in the elderly. Statistics in Medicine, 10, 1453-1464.CrossRefGoogle Scholar
- Neuhaus, J. M., Kalbfleisch, J. D., & Hauck, W. W. (1991). A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Review, 59, 25-30.CrossRefGoogle Scholar
- Ochi, Y., & Prentice, R. L. (1984). Likelihood inference in a correlated probit regression model. Biometrika, 71, 531-543.zbMATHMathSciNetCrossRefGoogle Scholar
- Olkin, I., & Tate, R. F. (1961). Multivariate correlation models with mixed discrete and continuous variables. Annals of Mathematical Statistics, 32, 448-465 (with correction in 36, 343-344).Google Scholar
- Oort, F. J. (2001). Three-mode models for multivariate longitudinal data. British Journal of Mathematical and Statistical Psychology, 54, 49-78.CrossRefGoogle Scholar
- Pearson, J. D., Morrell, C. H., Gordon-Salant, S., Brant, L. J., Metter, E. J., Klein, L. L., & Fozard, J. L. (1995). Gender differences in a longitudinal study of age-associated hearing loss. Journal of the Acoustical Society of America, 97, 1196-1205.CrossRefGoogle Scholar
- Pharmacological Therapy for Macular Degeneration Study Group (1997). Interferon α-IIA is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial. Archives of Ophthalmology, 115, 865-872.Google Scholar
- Pinheiro, J. C., & Bates, D. M. (2000). Mixed effects models in S and S-Plus. New York: Springer.zbMATHGoogle Scholar
- Prentice, R. L., & Zhao, L. P. (1991). Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics, 47, 825-839.zbMATHMathSciNetCrossRefGoogle Scholar
- Potthoff, R. F., & Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313-326.zbMATHMathSciNetGoogle Scholar
- Prentice, R. (1982). Covariate measurement errors and parameter estimates in a failure time regression model. Biometrika, 69, 331-342.zbMATHMathSciNetCrossRefGoogle Scholar
- Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics, 44, 1033-1048.zbMATHMathSciNetCrossRefGoogle Scholar
- Prentice, R. L. (1989). Surrogate endpoints in clinical trials: definitions and operational criteria. Statistics in Medicine, 8, 431-440.CrossRefGoogle Scholar
- Proust-Lima, C., Joly, P., Dartigues, J. F., & Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach. Computational Statistics and Data Analysis, 53, 1142-1154.zbMATHCrossRefGoogle Scholar
- Raab, G. M., & Donnelly, C. A. (1999). Information on sexual behaviour when some data are missing. Applied Statistics, 48, 117-133.Google Scholar
- Regan, M. M., & Catalano, P. J. (1999a). Likelihood models for clustered binary and continuous outcomes: Application to developmental toxicology. Biometrics, 55, 760-768.zbMATHCrossRefGoogle Scholar
- Regan, M. M., & Catalano, P. J. (1999b). Bivariate dose-response modeling and risk estimation in developmental toxicology. Journal of Agricultural, Biological and Environmental Statistics, 4, 217-237.MathSciNetCrossRefGoogle Scholar
- Regan, M. M., & Catalano, P. J. (2000). Regression models for mixed discrete and continuous outcomes with clustering. Risk Analysis, 20, 363-376.CrossRefGoogle Scholar
- Regan, M. M., & Catalano, P. J. (2002). Combined continuous and discrete outcomes. In M. Aerts, H. Geys, G. Molenberghs, & L. Ryan (Eds.), Topics in modelling of clustered data. London: Chapman & Hall.Google Scholar
- Renard, D., Geys, H., Molenberghs, G., Burzykowski, T., & Buyse, M. (2002). Validation of surrogate endpoints in multiple randomized clinical trials with discrete outcomes. Biometrical Journal, 44, 1-15.MathSciNetCrossRefGoogle Scholar
- Rizopoulos, D., Verbeke, G., & Molenberghs, G. (2009a). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics, to appear. doi: 10.1111/j.1541-0420.2009.01273.xGoogle Scholar
- Rizopoulos, D., Verbeke, G., & Lesaffre, E. (2009b). Fully exponential Laplace approximation for the joint modelling of survival and longitudinal data. Journal of the Royal Statistical Society, Series B, 71, 637-654.CrossRefGoogle Scholar
- Rizopoulos, D., Verbeke, G., & Molenberghs, G. (2008). Shared parameter models under random effects misspecification. Biometrika, 95, 63-74.zbMATHMathSciNetCrossRefGoogle Scholar
- Robins, J. M., Rotnitzky, A., & Scharfstein, D. O. (1998). Semiparametric regression for repeated outcomes with non-ignorable non-response. Journal of the American Statistical Association, 93, 1321-1339.zbMATHMathSciNetCrossRefGoogle Scholar
- Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90, 106-121.zbMATHMathSciNetCrossRefGoogle Scholar
- Roy, J., & Lin, X. (2000). Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics, 56, 1047-1054.zbMATHMathSciNetCrossRefGoogle Scholar
- Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons.CrossRefGoogle Scholar
- Rubin, D. B., Stern, H. S., & Vehovar, V. (1995). Handling “don’t know” survey responses: The case of the Slovenian plebiscite. Journal of the American Statistical Association, 90, 822-828.CrossRefGoogle Scholar
- Sammel, M. D., Ryan, L. M., & Legler, J. M. (1997). Latent variable models for mixed discrete and continuous outcomes. Journal of the Royal Statistical Society, Series B, 59, 667-678.zbMATHCrossRefGoogle Scholar
- Schafer J. L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.zbMATHGoogle Scholar
- Schafer, J. L. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica, 57, 19-35.MathSciNetCrossRefGoogle Scholar
- Schatzkin, A., & Gail, M. (2002). The promise and peril of surrogate end points in cancer research. Nature Reviews Cancer, 2, 19-27.CrossRefGoogle Scholar
- Schemper, M., & Stare, J. (1996). Explained variation in survival analysis. Statistics in Medicine, 15, 1999-2012.CrossRefGoogle Scholar
- Self, S., & Pawitan, Y. (1992). Modeling a marker of disease progression and onset of disease. In N.P. Jewell, K. Dietz, & V.T. Farewell (Eds.), AIDS epidemiology: Methodological issues. Boston: Birkhauser.Google Scholar
- Shah, A., Laird, N., & Schoenfeld, D. (1997). A random-effects model for multiple characteristics with possibly missing data. Journal of the American Statistical Association, 92, 775-779.zbMATHMathSciNetCrossRefGoogle Scholar
- Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423 and 623-656.Google Scholar
- Shock, N. W., Greullich, R. C., Andres, R., Arenberg, D., Costa, P. T., Lakatta, E. G., & Tobin, J. D. (1984). Normal human aging: The Baltimore Longitudinal Study of Aging. National Institutes of Health publication 84-2450.Google Scholar
- Shih, J. H., & Louis, T. A. (1995). Inferences on association parameter in copula models for bivariate survival data. Biometrics, 51, 1384-1399.zbMATHMathSciNetCrossRefGoogle Scholar
- Sivo, S. A. (2001). Multiple indicator stationary time series models. Structural Equation Modeling, 8, 599-612.MathSciNetCrossRefGoogle Scholar
- Song, X., Davidian, M., & Tsiatis, A. (2002). A semiparameteric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics, 58, 742-753.MathSciNetCrossRefGoogle Scholar
- Tate, R. F. (1954). Correlation between a discrete and a continuous variable. Annals of Mathematical Statistics, 25, 603-607.zbMATHMathSciNetCrossRefGoogle Scholar
- Tate, R.F. (1955). The theory of correlation between two continuous variables when one is dichotomized. Biometrika, 42, 205-216.zbMATHMathSciNetGoogle Scholar
- Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G., & Curran, D. (2002). Strategies to fit pattern-mixture models. Biostatistics, 3, 245-265.zbMATHCrossRefGoogle Scholar
- Therneau, T., & Grambsch, P. (2000). Modeling survival data: Extending the Cox Model. New York: Springer.zbMATHGoogle Scholar
- Thiébaut, R., Jacqmin-Gadda, H., Chêne, G., Leport, C., & Commenges, D. (2002). Bivariate linear mixed models using SAS PROC MIXED. Computer Methods and Programs in Biomedicine, 69, 249-256.CrossRefGoogle Scholar
- Thum, Y. M. (1997). Hierarchical linear models for multivariate outcomes. Journal of Educational and Behavioral Statistics, 22, 77-108.Google Scholar
- Tibaldi, F. S, Cortiñas Abrahantes, J., Molenberghs, G., Renard, D., Burzykowski, T., Buyse, M., Parmar, M., Stijnen, T., & Wolfinger, R. (2003). Simplified hierarchical linear models for the evaluation of surrogate endpoints. Journal of Statistical Computation and Simulation, 73, 643-658.zbMATHMathSciNetCrossRefGoogle Scholar
- Tseng, Y.-K., Hsieh, F., & Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.zbMATHMathSciNetCrossRefGoogle Scholar
- Tsiatis, A., & Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 447-458.zbMATHMathSciNetCrossRefGoogle Scholar
- Tsiatis, A., & Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. Statistica Sinica, 14, 809-834.zbMATHMathSciNetGoogle Scholar
- Tsiatis, A., DeGruttola, V., & Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association, 90, 27-37.zbMATHCrossRefGoogle Scholar
- Van der Laan, M. J., & Robins, J. M. (2002). Unified methods for censored longitudinal data and causality. New York: Springer.Google Scholar
- Verbeke, G., Lesaffre, E., & Spiessens, B. (2001). The practical use of different strategies to handle dropout in longitudinal studies. Drug Information Journal, 35, 419-434.Google Scholar
- Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer.zbMATHGoogle Scholar
- Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., & Kenward, M. G. (2001). Sensitivity analysis for non-random dropout: A local influence approach. Biometrics, 57, 7-14.MathSciNetCrossRefGoogle Scholar
- Wang, Y., & Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. Journal of the American Statistical Association, 96, 895-905.zbMATHMathSciNetCrossRefGoogle Scholar
- Wolfinger, R. D. (1998). Towards practical application of generalized linear mixed models. In B. Marx & H. Friedl (Eds.), Proceedings of the 13th International Workshop on Statistical Modeling (pp. 388-395). New Orleans, Louisiana, USA.Google Scholar
- Wolfinger, R., & O’Connell, M. (1993). Generalized linear mixed models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation, 48, 233-243.zbMATHCrossRefGoogle Scholar
- Wu, M., & Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188.zbMATHMathSciNetCrossRefGoogle Scholar
- Wulfsohn, M., & Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics, 53, 330-339.zbMATHMathSciNetCrossRefGoogle Scholar
- Xu, J., & Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events. Applied Statistics, 50, 375-387.zbMATHMathSciNetGoogle Scholar
- Yu, M., Law, N., Taylor, J., & Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statistica Sinica, 14, 835-832.zbMATHMathSciNetGoogle Scholar
- Zhao, L. P., Prentice, R. L., & Self, S. G. (1992). Multivariate mean parameter estimation by using a partly exponential model. Journal of the Royal Statistical Society B, 54, 805-811.Google Scholar