Advertisement

Application of Fuzzy Logic and Lukasiewicz Operators for Image Contrast Control

  • Angel Barriga
  • Nashaat Mohamed Hussein Hassan
Part of the Studies in Computational Intelligence book series (SCI, volume 372)

Abstract

This chapter reviews image enhancement techniques. In particular the chapter is focused in soft computing technique to improve the contrast of images. There is a wide variety of contrast control techniques. However, most are not suitable for hardware implementation. A technique to control the contrast in images based on the application of Lukasiewicz algebra operators and fuzzy logic is described. In particular, the technique is based on the bounded-sum and the bounded-product . The selection of the control parameters is performed by a fuzzy system. An interesting feature when applying these operators is that it allows low cost hardware realizations (in terms of resources) and high processing speed.

Keywords

Membership Function Fuzzy Logic Fuzzy System Image Enhancement Cumulative Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Z.Y., Abidi, B.R., Page, D.L., Abidi, M.A.: Gray-Level Grouping (GLG): An Automatic Method for Optimized Image Contrast Enhancement-Part I: The Basic Method. IEEE Transactions on Image Processing 15(8), 2290–2302 (2006)CrossRefGoogle Scholar
  2. 2.
    Khellaf, A., Beghdadi, A., Dupoisot, H.: Entropic Contrast Enhancement. IEEE Transactions on Medical Imaging 10(4), 589–592 (1991)CrossRefGoogle Scholar
  3. 3.
    Gonzalez, R.C., Wintz, P.: Digital Image Processing. Addison-Wesley, Reading (1987)Google Scholar
  4. 4.
    Kim, S.Y., Han, D., Choi, S.J., Park, J.S.: Image Contrast Enhancement Based on the Piece-wise-Linear Approximation of CDF. IEEE Transactions on Consumer Electronics 45(3), 828–834 (1999)CrossRefGoogle Scholar
  5. 5.
    Mantiuk, R., Daly, S., Kerofsky, L.: Display Adaptive Tone Mapping. ACM Transactions on Graphics 27(3), 68-1–68-10 (2008)Google Scholar
  6. 6.
    Tizhoosh, H.R.: Fuzzy image enhancement: an overview. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Hauβecker, H., Tizhoosh, H.R.: Fuzzy Image Processing. In: Handbook of Computer Vision and Applications. Academic Press, London (1999)Google Scholar
  8. 8.
    Tizhoosh, H.R., Krell, G., Michaelis, B.: Enhancement: Contrast Adaptation Based on Optimization of Image Fuzziness. In: Proceedings of IEEE International Conference on Fuzzy Systems FUZZ-IEEE 1998, pp. 1548–1553 (1998)Google Scholar
  9. 9.
    Tizhoosh, H.R.: Adaptive -Enhancement: Type I versus Type II Fuzzy Implementation. In: IEEE Symp. Series on Computational Intelligence (2009)Google Scholar
  10. 10.
    Li, H., Yang, H.S.: Fast and Reliable Image Enhancement Using Fuzzy Relaxation Technique. IEEE Transactions on Systems, Man and Cybernetics 19(5), 1276–1281 (1989)CrossRefGoogle Scholar
  11. 11.
    Zhou, S.M., Gan, Q.: A New Fuzzy Relaxation Algorithm for Image Contrast Enhancement. In: International Symposium on Image and Signal Processing and Analysis, pp. 11–16 (2003)Google Scholar
  12. 12.
    Wirth, M.A., Nikitenko, D.: Applications of Fuzzy Morphology to Contrast Enhancement. In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2005, pp. 355–360 (2005)Google Scholar
  13. 13.
    Liu, G.J., Huang, J.H., Tang, X.L., Liu, J.F.: A Novel Fuzzy Wavelet Approach to Contrast Enhancement. In: International Conference on Machine Learning and Cybernetics, pp. 4325–4330 (2004)Google Scholar
  14. 14.
    Pal, S.K., King, R.A.: Image enhancement using fuzzy set. Electronic Letters 16(10), 376–378 (1980)CrossRefGoogle Scholar
  15. 15.
    Dong-liang, P., An-ke, X.: Degraded image enhancement with applications in robot vision. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1837–1842 (2005)Google Scholar
  16. 16.
    Hanmandlu, M., Jha, D., Sharma, R.: Color image enhancement by fuzzy intensification. In: International Conference on Pattern Recognition, vol. 3, pp. 310–313 (2000)Google Scholar
  17. 17.
    Hanmandlu, M., Jha, D.: An Optimal Fuzzy System for Color Image Enhancement. IEEE Transactions on Image Processing 15(10), 2956–2966 (2006)CrossRefGoogle Scholar
  18. 18.
    Hanmandlu, M., Verma, O.P., Kumar, N.K., Kulkarni, M.: A Novel Optimal Fuzzy System for Color Image Enhancement Using Bacterial Foraging. IEEE Transactions on Instrumentation and Measurement 58(8), 2867–2879 (2009)CrossRefGoogle Scholar
  19. 19.
    Vlachos, I.K., Sergiadis, G.D.: Intuistic Fuzzy Image Processing. In: Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W. (eds.) Soft Computing in Image Processing. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Palaniappan, N., Srinivasan, R.: Applications of intuitionistic fuzzy sets of root type in image processing. In: North American Fuzzy Information Society Annual Conference, NAFIPS (2009)Google Scholar
  21. 21.
    Cheng, H.D., Xu, H.J.: Fuzzy approach to contrast enhancement. In: International Conference on Pattern Recognition, vol. 2, pp. 1549–1551 (1998)Google Scholar
  22. 22.
    Tizhoosh, H.R.: Fuzzy image processing. Springer, Heidelberg (1997) (in German)Google Scholar
  23. 23.
    Tizhoosh, H.R., Krell, G., Lilienblum, T., Moore, C.J., Michaelis, B.: Enhancement: and associative restoration of electronic portal images in radiotherapy. International Journal of Medical Informatics 49(2), 157–171 (1998)CrossRefGoogle Scholar
  24. 24.
    Russo, F.: An image enhancement technique combining sharpening and noise reduction. IEEE Transactions on Instrumentation and Measurement 51(4), 824–828 (2002)CrossRefGoogle Scholar
  25. 25.
    Kim, H.C., Kwon, B.H., Choi, M.R.: An Image Interpolator with Image Improvement for LCD Controller. IEEE Transactions on Consumer Electronics 47(2), 263–271 (2001)CrossRefGoogle Scholar
  26. 26.
    Cho, H.H., Choi, C.H., Kwon, B.H., Choi, M.R.: A Design of Contrast Controller for Image Improvement of Multi-Gray Scale Image. In: IEEE Asia Pacific Conference on ASICs, pp. 131–133 (2000)Google Scholar
  27. 27.
    Hussein, N.M., Barriga, A.: Image Contrast Control based on?ukasiewicz’s Operators. In: IEEE International Symposium on Intelligent Signal Processing (WISP 2009), pp. 131–135 (2009)Google Scholar
  28. 28.
    Hussein, N.M., Barriga, A.: Image Contrast Control based on?ukasiewicz’s Operators and Fuzzy Logic. In: International Conference on Intelligent Systems Design and Applications, ISDA 2009 (2009)Google Scholar
  29. 29.
    Sánchez-Solano, S., Barriga, A., Jiménez, C.J., Huertas, J.L.: Design and Applications of Digital Fuzzy Controllers. In: Proceedings of IEEE International Conference on Fuzzy Systems FUZZ-IEEE 1997, pp. 869–874 (1997)Google Scholar
  30. 30.
    Baturone, I., Barriga, A., Sánchez-Solano, S., Jiménez, C.J., López, D.: Microelectronic Design of Fuzzy Logic-Based Systems. CRC Press, Boca Raton (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Angel Barriga
    • 1
  • Nashaat Mohamed Hussein Hassan
    • 1
  1. 1.Instituto de Microelectronica de Sevilla (CNM-CSIC)University of SevilleSpain

Personalised recommendations