Design of Fuzzy Relation-Based Image Sharpeners

  • Fabrizio Russo
Part of the Studies in Computational Intelligence book series (SCI, volume 372)


Fuzzy relations among pixel luminances are simple and effective tools for the processing of digital images. This chapter shows how fuzzy relations can be adopted in the design of a complete image enhancement systems and successfully address conflicting tasks such as detail sharpening and noise cancellation. For this purpose, the different behaviors of fuzzy relation-based high-pass filters and noise smoothers are explained along with the effects of different parameter settings. Results of computer simulations show that fuzzy relation-based processing is an effective resource for the sharpening of noisy images and is easy to use.


fuzzy models fuzzy relations image sharpening noise cancellation detail preservation image quality assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson International, London (2008)Google Scholar
  2. 2.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  3. 3.
    Ramponi, G.: Polynomial and rational operators for image processing and analysis. In: Mitra, S.K., Sicuranza, G. (eds.) Nonlinear Image Processing, pp. 203–223. Academic, London (2000)Google Scholar
  4. 4.
    Arce, G.R., Paredes, J.L.: Image enhancement and analysis with weighted medians. In: Mitra, S.K., Sicuranza, G. (eds.) Nonlinear Image Processing, pp. 27–67. Academic, London (2000)Google Scholar
  5. 5.
    Matz, S.C., de Figueiredo, R.J.P.: A nonlinear technique for image contrast enhancement and sharpening. In: Proc. IEEE ISCAS, pp. 175–178 (1999)Google Scholar
  6. 6.
    De Figueiredo, R.J.P., Matz, S.C.: Exponential nonlinear Volterra filters for contrast sharpening in noisy images. In: Proc. IEEE ICASSP, pp. 2263–2266 (1996)Google Scholar
  7. 7.
    Polesel, A., Ramponi, G., Mathews, V.J.: Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)CrossRefGoogle Scholar
  8. 8.
    Hardie, R.C., Barner, K.E.: Extended permutation filters and their application to edge enhancement. IEEE Trans. Image Process. 5(6), 855–867 (1996)CrossRefGoogle Scholar
  9. 9.
    Fischer, M., Paredes, J.L., Arce, G.R.: Image sharpening using permutation weighted medians. In: Proc. X EUSIPCO, Tampere, Finland, pp. 299–302 (2000)Google Scholar
  10. 10.
    Fischer, M., Paredes, J.L., Arce, G. R.: Weighted median image sharpeners for the World Wide Web. IEEE Trans. Image Process. 11(7), 717–727 (2002) Google Scholar
  11. 11.
    Mitra, S.K., Li, H., Lin, I.-S., Yu, T.-H.: A new class of nonlinear filters for image enhancement. In: Proc. Int. Conf. Acoust., Speech Signal Process, Toronto, ON, Canada, pp. 2525–2528 (1991)Google Scholar
  12. 12.
    Thurnhofer, S.: Two-dimensional teager filters. In: Mitra, S.K., Sicuranza, G. (eds.) Nonlinear Image Processing, pp. 167–202. Academic, London (2000)Google Scholar
  13. 13.
    Ramponi, G., Strobel, N., Mitra, S.K., Yu, T.-H.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–366 (1996)CrossRefGoogle Scholar
  14. 14.
    Nakashizuka, M., Aokii, I.: A cascade configuration of the cubic unsharp masking for noisy image enhancement. In: Proc. Int. Symp. Intell. Signal Process. Commun. Syst., Hong Kong, pp. 161–164 (2005)Google Scholar
  15. 15.
    Ramponi, G., Polesel, A.: A rational unsharp masking technique. J. Electron. Imaging 7(2), 333–338 (1998)CrossRefGoogle Scholar
  16. 16.
    Russo, F.: An image enhancement technique combining sharpening and noise reduction. IEEE Trans. Instrum. Meas. 51(4), 824–828 (2002)CrossRefGoogle Scholar
  17. 17.
    Russo, F.: An Image Enhancement System Based on Noise Estimation. IEEE Trans. Instrum. Meas. 56(4), 1435–1442 (2007)CrossRefGoogle Scholar
  18. 18.
    Rovid, A., Varkonyi-Koczy, A.R., Varlaki, P.: 3D Model Estimation from Multiple Images. In: Proc. FUZZ-IEEE 2004, Budapest, Hungary (2004)Google Scholar
  19. 19.
    Rovid, A., Varkonyi-Koczy, A.R., Da Graca Ruano, M., Varlaki, P., Michelberger, P.: Soft Computing Based Car Body Deformation and EES Determination for Car Crash Analysis Systems. In: Proc. IMTC 2004, Como, Italy (2004)Google Scholar
  20. 20.
    Russo, F.: Fuzzy Models for Low-Level Computer Vision: A Comprehensive Approach. In: Proc. 2007 IEEE International Symposium on Intelligent Signal Processing, WISP 2007, Alcalà de Henares, Madrid, Spain (2007)Google Scholar
  21. 21.
    Russo, F., Lazzari, A.: Color Edge Detection in Presence of Gaussian Noise Using Nonlinear Prefiltering. IEEE Trans. Instrum. Meas. 54(1), 352–358 (2005)CrossRefGoogle Scholar
  22. 22.
    Russo, F.: A Method Based on Piecewise Linear Models for Accurate Restoration of Images Corrupted by Gaussian Noise. IEEE Trans. Instrum. Meas. 55(6), 1935–1943 (2006)CrossRefGoogle Scholar
  23. 23.
    Russo, F.: New Method for Performance Evaluation of Grayscale Image Denoising Filters. IEEE Signal Processing Letters 17(5), 417–420 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fabrizio Russo
    • 1
  1. 1.D.E.E.I.University of TriesteTriesteItaly

Personalised recommendations