Skip to main content

Weakly Supervised Learning: Application to Fish School Recognition

  • Chapter
New Advances in Intelligent Signal Processing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 372))

Abstract

This chapter deals with object recognition in images involving a weakly supervised classification model. In weakly supervised learning, the label information of the training dataset is provided as a prior knowledge for each class. This prior knowledge is coming from a global proportion annotation of images. In this chapter, we compare three opposed classification models in a weakly supervised classification issue: a generative model, a discriminative model and a model based on random forests. Models are first introduced and discussed, and an application to fisheries acoustics is presented. Experiments show that random forests outperform discriminative and generative models in supervised learning but random forests are not robust to high complexity class proportions. Finally, a compromise is achieved by taking a combination of classifiers that keeps the accuracy of random forests and exploits the robustness of discriminative models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by probability distributions. Bull. Calcutta Maths. Soc. 35, 99–109 (1943)

    MATH  Google Scholar 

  2. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Chapman and Hall, Boca Raton (1984)

    MATH  Google Scholar 

  4. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  5. Chung, J., Kim, T., Nam Chae, Y., Yang, H.: Unsupervised constellation model learning algorithm based on voting weight control for accurate face localization. Pattern Recognition 42(3), 322–333 (2009)

    Article  MATH  Google Scholar 

  6. Crandall, D.J., Huttenlocher, D.P.: Weakly supervised learning of part-based spatial models for visual object recognition. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Jour. of the RSS 39, Series B(1), 1–38 (1977)

    MathSciNet  Google Scholar 

  8. Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees. Machine Learning 40(2), 139–158 (2000)

    Article  Google Scholar 

  9. Fablet, R., Lefort, R., Scalabrin, C., Massé, J., Boucher, J.M.: Weakly supervised learning using proportion based information: an application to fisheries acoustic. In: International Conference on Pattern Recognition (2008)

    Google Scholar 

  10. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale invariant learning. In: Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  11. Fishburn, P.: Utility theory for decision making. John Wiley and Sons, New York (1970)

    MATH  Google Scholar 

  12. Fisher, R.: The use of multiple measurements in taxonomic problems. In: Annals of Eugenics, pp. 179–188 (1936)

    Google Scholar 

  13. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, L., Xing, E., Kanade, T.: Learning gmrf structures for spatial priors. In: Conference on Computer Vision and Pattern Recognition, pp. 1–6 (2007)

    Google Scholar 

  15. Kass, G.: An exploratory technique for invesgating large quantities of categorical data. Journal of applied statistics 29(2), 119–127 (1980)

    Article  Google Scholar 

  16. Lefort, R., Fablet, R., Boucher, J.M.: Combining image-level and object-level inference for weakly supervised object recognition. application to fisheries acoustics. In: International Conference on Image Processing (2009)

    Google Scholar 

  17. Lefort, R., Fablet, R., Boucher, J.M.: Weakly supervised learning with decision trees applied to fisheries acoustics. In: IEEE International Conference on Acoustics, Speech and Signal Processing (2010)

    Google Scholar 

  18. Loh, W.Y., Shih, Y.Y.: Split selection methods for classification trees. Statistica Sinica 7, 815–840 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Petitgas, P., Massé, J., Beillois, P., Lebarbier, E., Le Cann, A.: Sampling variance of species identification in fisheries acoustic surveys based on automated procedures associating acoustic images and trawl hauls. ICES Journal of Marine Science 60(3), 437–445 (2003)

    Article  Google Scholar 

  20. Ponce, J., Hebert, M., Schmid, C., Ziserman, A.: Toward Category-Level Object Recognition. LNCS. Springer, Heidelberg (2006)

    Google Scholar 

  21. Quinlan, J.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  22. Scalabrin, C., Massé, J.: Acoustic detection of the spatial and temporal distribution of fish shoals in the bay of biscay. Aquatic Living Resources 6, 269–283 (1993)

    Article  Google Scholar 

  23. Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)

    Google Scholar 

  24. Schmid, C.: Weakly supervised learning of visual models and its application to content-based retrieval. International Journal on Computer Vision 56, 7–16 (2004)

    Article  Google Scholar 

  25. Shivani, A., Roth, D.: Learning a sparse representation for object detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Ulusoy, I., Bishop, C.: Generative versus discriminative methods for object recognition. In: Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 258–265 (2005)

    Google Scholar 

  27. Vidal-Naquet, M., Ullmann, S.: Object recognition with informative features and linear classification. In: ICCV (2003)

    Google Scholar 

  28. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Xie, L., Perez, P.: Slightly supervised learning of part-based appearance models. In: Computer Vision and Pattern Recognition Workshop, vol. 6 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lefort, R., Fablet, R., Boucher, JM. (2011). Weakly Supervised Learning: Application to Fish School Recognition. In: Ruano, A.E., Várkonyi-Kóczy, A.R. (eds) New Advances in Intelligent Signal Processing. Studies in Computational Intelligence, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11739-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11739-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11738-1

  • Online ISBN: 978-3-642-11739-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics