Skip to main content

On Amplitude Scaling of Active Separation Control

  • Conference paper
Active Flow Control II

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 108))

Abstract

Various scaling options for the effects of excitation magnitude on the lift alternation due to zero-mass-flux periodic excitation for boundary layer separation control are examined. Physical scaling analysis leads to five amplitude parameters. The different scaling laws are examined using experimental data acquired at low Reynolds numbers and various angles of attack. The results indicate that both the velocity ratio and the momentum coefficient, commonly used for amplitude scaling of separation control applications, do not scale the current data-set. For 2D excitation with a Strouhal number of order unity, a Reynolds weighted momentum coefficient provides reasonable scaling. For 3D excitation with a Strouhal number greater than 10, the Reynolds scaled momentum coefficient, the Strouhal scaled velocity ratio and the newly defined vorticity-flux coefficient, all provide good scaling. The airfoil incidence variations are accounted for by using the velocity at the boundary layer edge at the actuation location, rather than the fixed free-stream velocity as a velocity scale. The main finding of this study is that the Reynolds number scaled momentum coefficient provides good amplitude scaling for the entire current data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verh. III. Intern. Math. Kongr., Heidelberg, pp. S. 484–491 (1904),0 Teubner, Leipzig (1905); (English Translation) On the motion of fluids of very small viscosity. NACA Technical Memorandum 452

    Google Scholar 

  2. Falkner, V.M., Skan, S.W.: Some approximations of the boundary layer equations. Philos. Mag. 12, 865–896 (1931)

    MATH  Google Scholar 

  3. Tani, I.: Low-Speed Flows Involving Bubble Separation. Prog. Aero. Sci. 5, 70 (1974)

    Article  Google Scholar 

  4. Seifert, A., Pack, L.G.: Oscillatory Control of Separation at High Reynolds Numbers. AIAA J. 37, 1062–1071 (1999)

    Article  Google Scholar 

  5. Ckandrasekhar, S.: Hydrodynamic and Hydro-magnetic Stability. Oxford University Press, Oxford (1961)

    Google Scholar 

  6. Bons, J.P., Sondergaard, R., Rivir, R.B.: Turbine Separation Control Using Pulsed Vortex Generator Jets. J. Turbomach. 123, 198–206 (2001)

    Article  Google Scholar 

  7. Johnston, J.P., Nishi, M.: Vortex generator jets - Means for flow separation control. AIAA J. 28, 989–994 (1990)

    Article  Google Scholar 

  8. Nagib, H., Kiedaisch, H.J., Reinhard, P., Demanett, B.: Control Techniques for Flows with Large Separated Regions: A New Look at Scaling Parameters. AIAA paper 2006-2857 (2006)

    Google Scholar 

  9. Schlichting, H.: Boundary layer theory. McGraw-Hill, New York (1951)

    Google Scholar 

  10. Johnson, J.P., Nishi, M.: Vortex Generator Jets-Means for Flow Separation control. AIAA J. 28, 989–994 (1990)

    Article  Google Scholar 

  11. Seifert, A., Darabi, A., Wygnanski, I.: Delay of Airfoil Stall by Periodic Excitation. J. Aircraft 33, 691–699 (1996)

    Article  Google Scholar 

  12. Poisson-Quinton, P., Lepage, L.: Survey of French research on the control of boundary layer and circulation. In: Lachmann, G.V., Boundary layer and flow control (1961)

    Google Scholar 

  13. Seifert, A., Bachar, T., Koss, D., Shepshelovits, M., Wygnanski, I.: Oscillatory Blowing, a Tool to Delay Boundary Layer Separation. AIAA J. 31, 2052–2060 (1993)

    Article  Google Scholar 

  14. Seifert, A., Pack, L.G.: Active Control of Separated Flow on a Wall-mounted “Hump” at High Reynolds Numbers. AIAA J. 40, 1363–1372 (2002)

    Article  Google Scholar 

  15. Didden, N.: On the formation of vortex rings: Rolling-up and production of circulation. ZAMP 30, 101–116 (1979)

    Article  Google Scholar 

  16. Yehoshua, T., Seifert, A.: Boundary Condition Effects on Oscillatory Momentum Generator. AIAA Paper 2003-3710 (2003)

    Google Scholar 

  17. Yehoshua, T., Seifert, A.: Active boundary layer tripping using oscillatory vorticity generator. Aerospace Science and Technology 10, 175–180 (2006)

    Article  Google Scholar 

  18. Yehoshua, T., Seifert, A.: Boundary Condition Effects on the Evolution of a Train of Vortex Pairs in Still Air. Aeronautical J. 110, 397–417 (2006)

    Google Scholar 

  19. Koss, D., Steinbuch, M., Shepshelovich, M.: Design and Experimental Evaluation of a High-Lift, Mild-Stall Airfoil. AIAA paper 94-1867 (1994)

    Google Scholar 

  20. Timor, I., Ben-Hamou, E., Guy, Y., Seifert, A.: Maneuvering Aspects and 3D Effects of Active Airfoil Flow Control. Special Issue of Flow, Turbulence and Combustion on Air-jet actuators and their use for flow control 78, 429–443 (2007)

    Google Scholar 

  21. Seifert, A., Eliahu, S., Greenblatt, D., Wygnanski, I.: Use of Piezoelectric Actuators for Airfoil Separation Control. AIAA J. 36, 1535–1537 (1998)

    Article  Google Scholar 

  22. Yom-Tov, Y., Seifert, A.: Multiple Actuators Flow Control over a Glauert type Airfoil at Low Reynolds Numbers. AIAA paper 2005-5389 (2005)

    Google Scholar 

  23. Wiltse, J.M., Glezer, A.: Direct excitation of small-scale motions in free shear flows. Phys. Fluids. 10, 2026–2036 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Amitay, M., Glezer, A.: Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA Journal 40, 209–216 (2002)

    Article  Google Scholar 

  25. Naim, A., Greenblatt, D., Seifert, A., Wygnanski, I.: Active Control of a Circular Cylinder Flow at Transitional Reynolds Numbers. Special Issue of Flow, Turbulence and Combustion on Air-jet actuators and their use for flow control 78, 383–407 (2007)

    Google Scholar 

  26. Margalit, S., Greenblatt, D., Seifert, A., Wygnanski, I.: Delta Wing Stall and Roll Control using Segmented Piezoelectric Fluidic Actuators. AIAA J. of Aircraft 42, 698–709 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stalnov, O., Seifert, A. (2010). On Amplitude Scaling of Active Separation Control. In: King, R. (eds) Active Flow Control II. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11735-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11735-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11734-3

  • Online ISBN: 978-3-642-11735-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics