Skip to main content

Using Multi-particle Entanglement in Secure Communication Scenarios

  • Conference paper
Book cover Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

The Quantum Entanglement lies at the heart of the new field of quantum communication and computation. Recently, quantum information theory has shown the tremendous importance of quantum correlations for the formulation of new methods of information transfer and for algorithms exploiting the capabilities of quantum computers. This paper describes the application and the importance of the multi-particle entangled states in secure communication scenarios. We show how to make communication secure against eavesdropping using entanglement-based quantum communication, and how to apply this communication protocols in real life situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyer, D.A.: Quantum Strategies. Phys. Rev. Lett. 82, 1052 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum Games and Quantum Strategies. Phys. Rev. Lett. 83, 3077 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Piotrowski, E.W., Sladkowski, J.: Quantum Game Theory. In: Mathematical Physics Frontiers. Nova Science Publishers, Inc., Berlin (2004)

    Google Scholar 

  4. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42, 1089 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Piotrowskia, E.W., Sladkowski, J.: Quantum English Auctions. Physica A 318, 505 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Piotrowskia, E.W., Sladkowski, J.: Quantum Auctions: Facts and Myths. Physica A 387, 3949 (2008)

    Article  MathSciNet  Google Scholar 

  7. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282, 1939 (2009)

    Article  Google Scholar 

  8. Wen, X., et al.: Secure Quantum Telephone. Optics Communications 275, 278–282 (2007)

    Article  Google Scholar 

  9. Naseri, M.: Eavesdropping on secure quantum telephone protocol with dishonest server. Opt. Commun. (2009), doi:10.1016/j.optcom.2009.05.012

    Google Scholar 

  10. Bennett, C.H., Brassard, G.: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings, Bangalore, India, p. 175. IEEE, New York (1984)

    Google Scholar 

  11. Beige, A., Engler, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357 (2002)

    Article  Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 32302 (2002)

    Article  Google Scholar 

  13. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  Google Scholar 

  15. Deng, F.G., Long, G.L., Li, X.H., Wen, K., Wang, W.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Front. Phys. China 2(3), 251 (2007)

    Google Scholar 

  16. Zhang, Z.J., Man, Z.X., Li, Y.: Improving Wójcik’s eavesdropping attack on the ping–pong protocol. Phys. Lett. A 333, 46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  Google Scholar 

  18. Zhang, Z.J., Li, Y., Man, Z.X.: Improved Wójcik’s eavesdropping attack on ping-pong protocol without eavesdropping-induced channel loss. Phys. Lett. A 341, 385 (2005)

    Article  MATH  Google Scholar 

  19. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15 (2005)

    Article  Google Scholar 

  20. Zhang, Z.J., Man, Z.X., Li, Y.: The Improved Bostrom–Felbinger Protocol Against Attacks Without Eavesdropping. Int. J. Quantum Inform. 2, 521 (2005)

    Article  Google Scholar 

  21. Man, Z.X., Zhang, Z.J., Li, Y.: Quantum Dialogue Revisited. Chin. Phys. Lett. 22, 18 (2005)

    Article  Google Scholar 

  22. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Google Scholar 

  23. Wojcik, A.: Eavesdropping on the “Ping-Pong” Quantum Communication Protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  Google Scholar 

  24. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  MathSciNet  Google Scholar 

  25. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  Google Scholar 

  26. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  Google Scholar 

  27. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  Google Scholar 

  28. Nguyen, B.A.: Quantum Dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, Y., et al.: Improving the security of secure quantum telephone against an attack with fake particles and local operations. Opt. Commun. 282, 2278 (2009)

    Article  Google Scholar 

  30. Naseri, M.: Eavesdropping on secure quantum telephone protocol with dishonest server. Optics Commun. 282, 3375–3378 (2009)

    Article  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Liu, X.S., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  Google Scholar 

  33. Subramanian, S.: Design and verification of a secure electronic auction protocol. In: Proc. IEEE 17th Symposium on Reliable Distributed Systems, Washington DC, USA, pp. 204–210 (1998)

    Google Scholar 

  34. Yang, Y.G., et al.: Improved Secure Quantum Sealed-Bid Auction. Optics Communications 282, 4167–4170 (2009)

    Article  Google Scholar 

  35. Qin, S.-J., et al.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Optics Communications 282, 4014–4016 (2009)

    Article  Google Scholar 

  36. Hillery, M., et al.: Towards quantum-based privacy and voting. Physics Letters A 349, 75–81 (2006)

    Article  MATH  Google Scholar 

  37. Vaccaro, J.A., et al.: Quantum protocols for anonymous voting and surveying. Physical Review A 75, 012333 (2007)

    Article  Google Scholar 

  38. Schneier, B.: Applied Cryptography, p. 125. Wiley, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Naseri, M. (2010). Using Multi-particle Entanglement in Secure Communication Scenarios. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics