Skip to main content

Few Atom Detection and Manipulation Using Optical Nanofibres

  • Conference paper
Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

We study the coupling of spontaneously emitted photons from laser-cooled 85Rb atoms to the guided modes of an optical nanofibre to demonstrate the potential such fibres offer as tools for detecting and manipulating cold atoms, even when the number of atoms is very small. We also demonstrate the integration of an optical nanofibre into an absorption spectroscopy setup, showcasing the ability of the evanescent field around nanofibres to interact with atoms in close proximity to the fibre. In principle, trapping of single atoms in engineered optical potentials on the surface of the fibre should facilitate entanglement between distant atoms mediated via the guided modes of the nanofibre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Kien, F., Balykin, V.I., Hakuta, K.: Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Phys. Rev. A 70, 063403 (2004)

    Article  Google Scholar 

  2. Sagué, G., Baade, A., Rauschenbeutel, A.: Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultra-thin optical fibres. New J. Phys. 10, 113008 (2008)

    Article  Google Scholar 

  3. Russell, L., Gleeson, D.A., Minogin, V.G., Nic Chormaic, S.: Spectral distribution of atomic fluorescence coupled into an optical nanofibre. J. Phys. B 42, 185006 (2009)

    Article  Google Scholar 

  4. Nayak, K.P., Melentiev, P.N., Moringa, M., Le Kien, F., Balykin, V.I., Hakuta, K.: Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Optics Express 15, 5431 (2007)

    Article  Google Scholar 

  5. Morrissey, M.J., Deasy, K., Wu, Y., Chakrabarti, S., Nic Chormaic, S.: Tapered optical fibers as tools for probing magneto-optical trap characteristics. Rev. Sci. Instrum. 80, 053102 (2009)

    Google Scholar 

  6. Bures, J., Ghosh, R.: Power density in the vicinity of a tapered fiber. J. Opt. Soc. Am. A 16, 1992 (1999)

    Article  Google Scholar 

  7. Tong, L., Lou, J., Mazur, E.: Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express 12, 1025–1035 (2004)

    Article  Google Scholar 

  8. Cai, M., Painter, O., Vahala, K.J.: Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett. 85, 74–77 (2000)

    Article  Google Scholar 

  9. Ward, J.M., Féron, P., Nic Chormaic, S.: A taper-fused microspherical laser source. IEEE Photonics Technology Letters 20, 392–394 (2008)

    Article  Google Scholar 

  10. Spillane, S.M., Pati, G.S., Salit, K., Hall, M., Kumar, P., Beausoleil, R.G., Shahriar, M.S.: Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008)

    Article  Google Scholar 

  11. Tong, L., Gattass, R.R., Ashcom, J.B., He, S., Lou, J., Shen, M., Maxwell, I., Mazur, E.: Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    Article  Google Scholar 

  12. Ward, J.M., O’Shea, D.G., Shortt, B.J., Morrissey, M.J., Deasy, K., Nic Chormaic, S.: Heat-and-pull rig for fiber taper fabrication. Rev. Sci. Instrum. 77, 083105 (2006)

    Article  Google Scholar 

  13. Birks, T., Li, Y.: The shape of fiber tapers. J. Light. Tech. 10, 432 (1992)

    Article  Google Scholar 

  14. Love, J.D., Henry, W.M., Stewart, W.J., Black, R.J., Lacroix, S., Gonthier, F.: Tapered single-mode fibres and devices. 1. Adiabaticity criteria. IEEE Proc. 138, 342 (1991)

    Google Scholar 

  15. Metcalf, H.J., van der Straten, P.: Laser Cooling and Trapping. Springer, Heidelberg (1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Deasy, K., Watkins, A., Morrissey, M., Schmidt, R., Chormaic, S.N. (2010). Few Atom Detection and Manipulation Using Optical Nanofibres. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics