Skip to main content

Computationally Efficient Mutual Entity Authentication in Wireless Sensor Networks

  • Conference paper
Book cover Ad Hoc Networks (ADHOCNETS 2009)

Abstract

Mutual entity authentication plays an important role in securing wireless sensor networks. In this paper, we present a computationally efficient authentication framework, based on learning parity with noise problem. The authentication only requires the simplest bit-operations, which makes it suitable for resource-restrained wireless sensor networks. The framework not only presents an approach to securely combine two one-way authentication protocols from the HB-family, but also provides significant enhancements in terms of feasibility of storage/communication requirement. It spawns three specific protocols with different trade-offs between communication overload and memory cost. We extensively analyze their performance and security properties. Furthermore, their applications in different wireless sensor network scenarios are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Benenson, Z., Gedicke, N., Raivio, O.: Realizing robust user authentication in sensor networks. In: Real-World Wireless Sensor Networks, REALWSN (2005)

    Google Scholar 

  3. Jiang, C., Li, B., Xu, H.: An Efficient Scheme for User Authentication in Wireless Sensor Networks. In: 21st International Conference on Advanced Information Networking and Applications Workshops, pp. 438–442 (2007)

    Google Scholar 

  4. Wong, K.H., Zheng, Y., Cao, J., Wang, S.: A Dynamic User Authentication Scheme for Wireless Sensor Networks. In: IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC 2006), pp. 244–251 (2006)

    Google Scholar 

  5. Tseng, H.R., Jan, R.H., Yang, W.: An Improved Dynamic User Authentication Scheme for Wireless Sensor Networks. In: IEEE Global Telecommunications Conference (GLOBECOM 2007), pp. 986–990 (2007)

    Google Scholar 

  6. Tripathy, S., Nandi, S.: Defense against outside attacks in wireless sensor networks. Computer Communications 31(4), 818–826 (2008)

    Article  Google Scholar 

  7. Crawford, J.M., Kearns, M.J.: The Minimal Disagreement Parity Problem as a Hard Satisfiability Problem. Computational Intelligence Research Laboratory and AT&T Bell Labs (1995), http://www.cs.cornell.edu/selman/docs/crawford-parity.pdf

  8. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  10. Håstad, J.: Some optimal inapproximability results. In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, El Paso, Texas, United States (1997)

    Google Scholar 

  11. Hopper, N., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. Journal of the ACM (J. ACM) 50(4), 506–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fossorier, M.P.C., Mihaljević, M.J., Imai, H., Cui, Y., Matsuura, K.: An Algorithm for Solving the LPN Problem and Its Application to Security Evaluation of the HB Protocols for RFID Authentication. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 48–62. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Levieil, E., Fouque, P.A.: An Improved LPN Algorithm. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005), http://www.rsasecurity.com/rsalabs/staff/bios/ajuels/publications/pdfs/lpn.pdf

    Chapter  Google Scholar 

  16. Katz, J., Shin, J.: Parallel and Concurrent Security of the HB and HB+ Protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Katz, J., Smith, A.: Analyzing the HB and HB +  Protocols in the “Large Error” Case. Technical report, Cryptology ePrint Archive, Report 2006/326 (2006)

    Google Scholar 

  18. Gilbert, H., Robshaw, M., Sibert, H.: An Active Attack Against HB +  - A Provably Secure Lightweight Authentication Protocol. Technical report, Cryptology ePrint Archive: Report 2005/237 (2005)

    Google Scholar 

  19. Bringer, J., Chabanne, H., Dottax, E.: HB++: a Lightweight Authentication Protocol Secure against Some Attacks. In: Chabanne, H. (ed.) Second International Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU 2006), pp. 28–33 (2006)

    Google Scholar 

  20. Duc, D.N., Kim, K.: Securing HB+ Against GRS Man-in-the-Middle Attack. In: Proceedings of Symposium on Cryptography and Information Security (SCIS 2007), Sasebo, Japan (2007)

    Google Scholar 

  21. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight authentication protocols. Comput. Networks 51(9), 2262–2267 (2007)

    Article  MATH  Google Scholar 

  22. Gilbert, H., Robshaw, M.J., Seurin, Y.: Good Variants of HB+ are Hard to Find. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Piramuthu, S.: HB and Related Lightweight Authentication Protocols for Secure RFID Tag/Reader Authentication. In: CollECTeR Europe Conference (2006)

    Google Scholar 

  24. Leng, X., Mayes, K., Markantonakis, K.: HB-MP+ Protocol: An Improvement on the HB-MP Protocol. In: IEEE International Conference on RFID, pp. 118–124 (2008)

    Google Scholar 

  25. Hammouri, G., Sunar, B.: PUF-HB: A Tamper-Resilient HB Based Authentication Protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Bringer, J., Chabanne, H.: Trusted-HB: A Low-Cost Version of HB+ Secure Against Man-in-the-Middle Attacks. IEEE Transactions on Information Theory 54(9), 4339–4342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gilbert, H., Robshaw, M.J., Seurin, Y.: HB#: Increasing the Security and Efficiency of HB + . In: Advances in Cryptology EUROCRYPTO 2008 (2008), Full version available at: Cryptology ePrint Archive: Report 2008/028 (2008)

    Google Scholar 

  28. Carrijo, J., Tonicelli, R., Imai, H., Nascimento, A.C.A.: A Novel Probabilistic Passive Attack on the Protocols HB and HB + . Technical report, Cryptology ePrint Archive: Report 2008/231 (2008)

    Google Scholar 

  29. Zhu, S., Setia, S., Jajodia, S.: LEAP: efficient security mechanisms for large-scale distributed sensor networks. In: Proceedings of the 10th ACM conference on Computer and Communication Security (CCS 2003), Washington, DC, pp. 62–72. ACM, New York (2003)

    Chapter  Google Scholar 

  30. Anderson, R., Chan, H., Perrig, A.: Key Infection: Smart Trust for Smart Dust. In: Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP 2004), pp. 206–215 (2004)

    Google Scholar 

  31. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM conference on Computer and Communications Security, Washington, DC, USA, pp. 41–47 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Li, Z., Gong, G. (2010). Computationally Efficient Mutual Entity Authentication in Wireless Sensor Networks. In: Zheng, J., Mao, S., Midkiff, S.F., Zhu, H. (eds) Ad Hoc Networks. ADHOCNETS 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11723-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11723-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11722-0

  • Online ISBN: 978-3-642-11723-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics