Skip to main content

Wavelet Transform Analysis of the Power Spectrum of Centre of Pressure Signals to Detect the Critical Point Interval of Postural Control

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2009)

Abstract

The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubenstein, L.Z., Josephson, K.R.: The epidemiology of falls and syncope. Clin. Geriatr. Med. 18, 141–158 (2002)

    Article  Google Scholar 

  2. Roll, J.P., Vedel, J.P.: Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp. Brain Res. 47, 177–190 (1982)

    Article  Google Scholar 

  3. Collins, J.J., De Luca, C.J.: Random walking during quiet standing. Physical Review Letters 73, 764–767 (1994)

    Article  Google Scholar 

  4. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Transactions on Information Theory 38, 617–643 (1992)

    Article  MathSciNet  Google Scholar 

  5. Muzzy, J., Barcy, E., Areno, A.: Wavelets and multifractals for singular signal: application to turbulence data. Physical Review Letters 67, 3515–3519 (1991)

    Article  Google Scholar 

  6. Ferdjallah, M., Harris, G.F., Wertsch, J.J.: Instantaneous postural stability characterization using time-frequency analysis. Gait & Posture 10, 129–134 (1999)

    Article  Google Scholar 

  7. Schmuckler, M.: Children’s postural sway in response to low- and high-frequency visual information for oscillation. Jouranl of Experimental Psychology: Human Perception and Performance 23, 528–545 (1997)

    Article  Google Scholar 

  8. Loughlin, P.J., Redfern, M.S., Furman, J.M.: Time-varying characteristics of visually induced postural sway. IEEE Trans. Rehabil. Eng. 4, 416–424 (1996)

    Article  Google Scholar 

  9. Thurner, S., Mittermaier, C., Hanel, R., Ehrenberger, K.: Scaling-violation phenomena and fractality in the human posture control systems. Physical Review E 62, 4018 (2000)

    Article  Google Scholar 

  10. Amoud, H., Abadi, M., Hewson, D.J., Michel, V., Doussot, M., Duchêne, J.: Fractal time series analysis of postural stability in elderly and control subjects. Journal of NeuroEngineering and Rehabilitation 4, 12 (2007)

    Article  Google Scholar 

  11. Norris, J.A., Marsh, A.P., Smith, I.J., Kohut, R.I., Miller, M.E.: Ability of static and statistical mechanics posturographic measures to distinguish between age and fall risk. J. Biomech. 38, 1263–1272 (2005)

    Article  Google Scholar 

  12. Amoud, H., Snoussi, H., Hewson, D.J., Doussot, M., Duchêne, J.: Intrinsic mode entropy for nonlinear discriminant analysis. IEEE Signal Processing Letters 14, 297–300 (2007)

    Article  Google Scholar 

  13. Challis, J.H.: Aging, regularity and variability in maximum isometric moments. Journal of Biomechanics 39, 1543–1546 (2006)

    Article  Google Scholar 

  14. Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., Ivanov, P., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America 99(suppl. 1), 2466–2472 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, N.K., Snoussi, H., Hewson, D., Duchêne, J. (2010). Wavelet Transform Analysis of the Power Spectrum of Centre of Pressure Signals to Detect the Critical Point Interval of Postural Control. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2009. Communications in Computer and Information Science, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11721-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11721-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11720-6

  • Online ISBN: 978-3-642-11721-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics