Skip to main content

Gait Planning of Biped Robots Using Soft Computing: An Attempt to Incorporate Intelligence

  • Chapter
Intelligent Autonomous Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 275))

Abstract

This chapter deals with the issues related to incorporation of intelligence using soft computing to biped robots moving on some uneven terrains, such as staircases, sloping surfaces, ditches, and others. The said problems have been solved utilizing both analytical as well as soft computing-based approaches. In the analytical approach, the concepts of inverse kinematics and static balance have been used to generate the gaits of lower limbs and trunk, respectively, and its dynamic balance has been verified utilizing the position of zero moment point, whereas in soft computing-based approaches, either neural network- or fuzzy logic-based gait planner has been used to generate the motion of trunk and swing foot of the biped robot. The knowledge bases of neural network and fuzzy logic-based approaches have been optimized separately using a genetic algorithm off-line. The performances of the developed approaches have been tested through computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shih, C.: Ascending and descending stairs for a biped. IEEE Transactions on Systems, Man and Cybermatics - PART-A: Systems and Humans 29(3), 255–268 (1998)

    Article  Google Scholar 

  2. Vukobratovic, M., Frank, A.A., Juricic, D.: On the stability of biped locomotion. IEEE Trans. Biomedical Engineering BME 17(1), 25–36 (1970)

    Article  Google Scholar 

  3. Mousavi, P.N., Bagheri, A.: Mathematical simulation of a seven link biped robot on various surfaces and ZMP consideration. Applied Mathematical Modeling 31, 18–37 (2007)

    Article  MATH  Google Scholar 

  4. Yagi, M., Lumelsky, V.: Biped robot locomotion in scenes with unknown obstacles. In: Proc. of IEEE Int’l Conf. on Robotics & Automation, Detroit, Michigan, pp. 375–380 (1999)

    Google Scholar 

  5. Juricic, D., Vukobratovic, M.: Mathematical modeling of biped walking systems. ASME Publication 72-WA/BHF13 (1972)

    Google Scholar 

  6. Lee, T., Chen, Y.: Minimum-fuel path planning of a 5-link biped robot. In: Proc. of Southern Symposium on System Theory, pp. 20–22 (1988)

    Google Scholar 

  7. Channon, P.H., Hopkins, S.H., Phan, D.T.: Derivation of optimal walking motions for a biped walking robot. Robotica 10(2), 165–172 (1992)

    Article  Google Scholar 

  8. Roussel, L., Wit, C.: Generation of energy optimal complete gait cycles for biped robots. In: Proc. of IEEE Int’l Conf. on Robotics & Automation, Leuven, Belgium, pp. 2036–2041 (1998)

    Google Scholar 

  9. Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Automat. 6, 86–96 (1990)

    Article  Google Scholar 

  10. Takanishi, A., Ishida, M., Yamazaki, Y., Kato, I.: The realization of dynamic walking robot WL-10RD. In: Proc. of Int. Conf. Advanced Robotics, pp. 459–466 (1985)

    Google Scholar 

  11. Hirai, K., Hirose, M., Haikawa, Y., Takenada, K.: The development of honda humanoid robot. In: Proc. of IEEE Int’l Conf. on Robotics & Automation, pp. 1321–1326 (1998)

    Google Scholar 

  12. Dasgupta, A., Nakamura, Y.: Making feasible walking motion of humanoid robots from human motion capture data. In: Proc. of IEEE Int’l Conf. on Robotics & Automation, pp. 1044–1049 (1999)

    Google Scholar 

  13. Tsujita, K., Tsuchiya, K., Kawano, Y.: A study on optimal motion of a biped locomotion machine. Artificial Life and Robotics 3(2), 55–60 (1999)

    Article  Google Scholar 

  14. Park, J.H., Haan, J., Park, F.C.: Convex optimization algorithms for active balancing of humanoid robots. IEEE Transactions on Robotics 23(4), 817–822 (2007)

    Article  Google Scholar 

  15. Pratihar, D.K.: Soft Computing. Alpha Science International, Oxford (2008)

    Google Scholar 

  16. Salatian, A.W., Zheng, Y.F.: Gait synthesis for a biped robot climbing sloping surfaces using neural networks, part II: Dynamic learning. In: Proc. of IEEE Int’l Conf. on Robotics and Automation, Nice, France, pp. 2607–2611 (1992)

    Google Scholar 

  17. Benbrahim, H., Franklin, J.A.: Biped dynamic walking using reinforcement learning. Robotics and Autonomous Systems 22, 283–302 (1997)

    Article  Google Scholar 

  18. Juang, J.G.: Intelligent locomotion control on sloping surfaces. Information Sciences (147), 229–243 (2002)

    Google Scholar 

  19. Sabourin, C., Bruneau, O.: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks. Robotics and Autonomous Systems (51), 81–99 (2005)

    Google Scholar 

  20. Yilei, W., Qing, S., Xulei, Y.: Robust recurrent neural network control of biped robot. Journal of Intelligent and Robotic Systems 49, 151–169 (2007)

    Article  Google Scholar 

  21. Capi, G., Nasu, Y., Borolli, L., Mitobi, K.: Real time gait generation for autonomous humanoid robots: A case study for walking. Robotics and Autonomous Systems 42, 107–116 (2003)

    Article  MATH  Google Scholar 

  22. Shih, C.L., Gruver, W.A., Zhu, Y.: Fuzzy logic force control for a biped robot. In: Proc. of IEEE Int’l Symposium on Intelligent Control, Virginia, USA, pp. 269–274 (1991)

    Google Scholar 

  23. Park, J.H.: Fuzzy-logic zero-moment-point trajectory generation for reduced trunk motions of biped robots. Fuzzy Sets and systems 134(1), 189–203 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cuevas, E.V., Zaldivar, D., Rojas, R.: Incremental fuzzy control for a biped robot balance. In: Proc. of Int. Conf. on Robotics and Applications, Cambridge, USA (2005)

    Google Scholar 

  25. Zhou, C., Jagannathan, K.: Adaptive network based fuzzy control of a dynamic biped walking robot. In: IEEE Int’l joint symposia on Intelligence and Systems, pp. 109–116 (1996)

    Google Scholar 

  26. Zhou, C., Meng, Q.: Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets and Systems 134(1), 169–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gu, D., Hu, H.: Evolving fuzzy logic controllers for SONY legged robots. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 356. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Jha, R.K., Singh, B., Pratihar, D.K.: On-line stable gait generation of a two-legged robot using a Genetic-Fuzzy system. Robotics and Autonomous Systems 53, 15–35 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vundavilli, P.R., Pratihar, D.K. (2010). Gait Planning of Biped Robots Using Soft Computing: An Attempt to Incorporate Intelligence. In: Pratihar, D.K., Jain, L.C. (eds) Intelligent Autonomous Systems. Studies in Computational Intelligence, vol 275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11676-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11676-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11675-9

  • Online ISBN: 978-3-642-11676-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics