Skip to main content

Long-Term Planning and Prediction: Visiting a Construction Site in the Human Brain

  • Chapter
  • First Online:
Book cover Interdisciplinary Anthropology

Abstract

Long-term planning and prediction have been suggested to be human faculties that we do not share with other species. Here, evidence for a neurofunctional gradation of prediction and planning functions is reviewed that is located in the frontal lobes and reflects a more or less continuous time scale. It shows that those parts of the gradation that reflect long-term planning and prediction, particularly the frontopolar cortex, appear to mature later during ontogeny and are suggested to have evolved later during phylogeny than those underlying short-term planning and prediction. The review is followed by the report of a series of studies in human subjects that aimed to further our understanding of cognitive planning and prediction and its neural basis in the frontal lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While area 10 in humans contains more than three times more neurons than in chimpanzees, bonobos, or orangutans, the ratio between cell bodies and neuropil in this area is much lower in humans than in any of the other great apes or gibbons. The more the neuropil as compared to cell bodies is found, the more the space for connections.

  2. 2.

    This does not rule out that hyperscaling is at the basis of unique human abilities; it just indicates that hyperscaling may be a necessary, but cannot be a sufficient, component in explaining these abilities.

  3. 3.

    While Ramnani and Owen do not explicitly present their review as addressing only a frontopolar subregion, functional concepts they consider clearly focus on the lateral area 10 while neglecting the mesial and orbital part of it.

  4. 4.

    Tsujimoto and colleagues provide evidence in favor of a frontal pole role in monitoring or evaluating self-generated decisions. However, one single study cannot provide a solid basis of, but only a first building block for, a functional account for area 10 in macaques.

References

  • Abraham A, Werning M, Rakoczy H, von Cramon DY, Schubotz RI (2008) Minds, persons, and space: an fMRI investigation into the relational complexity of higher-order intentionality. Conscious Cogn 17(2):438–450

    PubMed  Google Scholar 

  • Addis DR, Wong AT, Schacter DL (2007) Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45(7):1363–1377

    PubMed  Google Scholar 

  • Allman J, Hakeem A, Watson K (2002) Two phylogenetic specializations in the human brain. Neuroscientist 8:335–346

    PubMed  Google Scholar 

  • Allport A (1987) Selection for action: some behavioral and neurophysiological considerations of attention and action. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 395–419

    Google Scholar 

  • Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63

    PubMed  CAS  Google Scholar 

  • Atance CM (2008) Future thinking in young children. Curr Dir Psychol Sci 17:295–298

    Google Scholar 

  • Atance CM, Meltzoff AN (2006) Preschoolers’ current desires warp their choices for the future. Psychol Sci 17(7):583–587

    PubMed  Google Scholar 

  • Atance CM, O’Neill DK (2005) The emergence of episodic future thinking in humans. Learn Motiv 36(2):126–144

    Google Scholar 

  • Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci USA 99(20):13172–13177

    PubMed  CAS  Google Scholar 

  • Badre D (2007) Ventrolateral prefrontal cortex and controlling memory to inform action. In: Bunge SA, Wallis JD (eds) The neuroscience of rule-guided behavior. Oxford University Press, New York, pp 365–389

    Google Scholar 

  • Badre D, Wagner AD (2007) Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45(13):2883–2901

    PubMed  Google Scholar 

  • Bahlmann J, Schubotz RI, Friederici AD (2008) Hierarchical artificial grammar processing engages Broca’s area. Neuroimage 42:525–534

    PubMed  Google Scholar 

  • Bar M (2007a) The continuum of “looking forward”, and paradoxical requirements from memory. Behav Brain Sci 30(3):315–316

    Google Scholar 

  • Bar M (2007b) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289

    PubMed  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405(6790):1055–1058

    PubMed  CAS  Google Scholar 

  • Bischof-Köhler D (1985) Zur Phylogenese menschlicher motivation [On the phylogeny of human motivation]. In: Eckensberger LH, Lantermann ED (eds) Emotion und Reflexivität (pp. 3–47). Urban & Schwarzenberg, Baltimore, MD

    Google Scholar 

  • Bischof-Köhler D (2000) Kinder auf Zeitreise. Theory of Mind, Zeitverstðndnis und Handlungsorganisation. Verlag Hans Huber, Bern

    Google Scholar 

  • Bubic A, von Cramon DY, Schubotz RI (2009) Motor foundations of higher cognition: similarities and differences in processing regular and violated perceptual sequences of different specificity. Eur J Neurosci 30(12):2407–2414

    PubMed  Google Scholar 

  • Buckner RL (2003) Functional-anatomic correlates of control processes in memory. J Neurosci 23(10):3999–4004

    PubMed  CAS  Google Scholar 

  • Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57

    PubMed  Google Scholar 

  • Burgess P, Shallice T (1997) The relationship between prospective memory and retrospective memory: neuropsychological evidence. In: Gathercole S, Conway M (eds) Cognitive models of memory. Psychology, London, UK

    Google Scholar 

  • Call J, Tomasello M (2008) Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn Sci 12(5):187–192

    PubMed  Google Scholar 

  • Carpenter PA, Just MA, Shell P (1990) What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol Rev 97:404–431

    PubMed  CAS  Google Scholar 

  • Christoff K, Prabhakaran V, Dorfman J, Zhao Z, Kroger JK, Holyoak KJ, Gabrieli JD (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14:1136–1149

    PubMed  CAS  Google Scholar 

  • Dere E, Kart-Teke E, Huston JP, Silva MAD (2006) The case for episodic memory in animals. Neurosci Biobehav Rev 30(8):1206–1224

    PubMed  CAS  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(1):279–306

    PubMed  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 12(7–8):961–974

    PubMed  Google Scholar 

  • Duvernoy HM (1999) The human brain. Surface, blood supply, and three-dimensional sectional anatomy, 2nd edn. Springer, Wien

    Google Scholar 

  • Ebeling U, von Cramon D (1992) Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochir 115:143–148

    CAS  Google Scholar 

  • Fadiga L, Fogassi L, Gallese V, Rizzolatti G (2000) Visuomotor neurons: ambiguity of the discharge or ‘motor’ perception? Int J Psychophysiol 35(2–3):165–177

    PubMed  CAS  Google Scholar 

  • Fagg A, Arbib M (1998) Modeling parietal–premotor interactions in primate control of grasping. Neural Netw 11:1277–1303

    PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291(5502):312–316

    PubMed  CAS  Google Scholar 

  • Friederici AD, Bahlmann J, Heim S, Schubotz RI, Anwander A (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc Natl Acad Sci USA 103:2458–2463

    PubMed  CAS  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex-anatomy physiology, and neuropsychology of the frontal lobe. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Fuster JM (2001) The prefrontal cortex – an update: time is of the essence. Neuron 30(2):319–333

    PubMed  CAS  Google Scholar 

  • Gail A, Klaes C, Westendorff S (2009) Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex. J Neurosci 29(30):9490–9499

    PubMed  Google Scholar 

  • Gevins A, Cutillo B (1993) Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr Clin Neurophysiol 87:128–143

    PubMed  CAS  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin Company, Boston, MA

    Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    PubMed  CAS  Google Scholar 

  • Golde M, von Cramon DY, Schubotz RI (2010) Differential role of anterior prefrontal and premotor cortex in the processing of relational information. Neuroimage 49(3):2890–2900

    PubMed  Google Scholar 

  • Grafman J (1995) Similarities and distinctions among current models of prefrontal cortical functions. Ann NY Acad Sci 769:337–368

    PubMed  CAS  Google Scholar 

  • Grant CM, Riggs KJ, Boucher J (2004) Counterfactual and mental state reasoning in children with autism. J Autism Dev Disord 34(2):177–188

    PubMed  Google Scholar 

  • Guajardo NR, Parker J, Turley-Ames K (2009) Associations among false belief understanding, counterfactual reasoning, and executive function. Br J Dev Psychol 27(3):681–702

    PubMed  Google Scholar 

  • Haarmann F, von Cramon DY, Seiffert S, Schubotz RI (in preparation). Premotor lesions affect serial prediction but not n-back

    Google Scholar 

  • Hampton RR, Schwartz BL (2004) Episodic memory in nonhumans: what, and where, is when? Curr Opin Neurobiol 14:192–197

    PubMed  CAS  Google Scholar 

  • Hassabis D, Maguire EA (2007) Deconstructing episodic memory with construction. Trends Cogn Sci 11(7):299–306

    PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The Theory of Event Coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937

    PubMed  CAS  Google Scholar 

  • Hoshi E, Shima K, Tanji J (1998) Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex. J Neurophysiol 80(6):3392–3397

    PubMed  CAS  Google Scholar 

  • Ingvar DH (1985) “Memory of the future”: an essay on the temporal organization of conscious awareness. Hum Neurobiol 4(3):127–136

    PubMed  CAS  Google Scholar 

  • Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb Cortex 11(6):558–571

    PubMed  CAS  Google Scholar 

  • Kaas J (2006) Evolution of nervous systems. Academic, London

    Google Scholar 

  • Kaiser M (2007) Brain architecture: a design for natural computation. Philos Transact A Math Phys Eng Sci 365(1861):3033–3045

    PubMed  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302(5648):1181–1185

    PubMed  CAS  Google Scholar 

  • Kondo H, Saleem KS, Price JL (2003) Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 465(4):499–523

    PubMed  Google Scholar 

  • Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485

    PubMed  Google Scholar 

  • Kühn AB, Koch I, von Cramon DY, Schubotz RI (2010) Learning chunking hierarchies in non-motor (cognitive) sequences. J Cogn Neurosci 22(Suppl):173

    Google Scholar 

  • Kühn AB, von Cramon DY, Koch I, Schubotz RI (in preparation). Hierarchical chunking in perceptual sequences – evidence from fMRI

    Google Scholar 

  • Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40(3):1044–1055

    PubMed  CAS  Google Scholar 

  • Luria AR (1966) Higher cortical functions in man. Basic Books, Oxford, England

    Google Scholar 

  • Muhammad R, Wallis JD, Miller EK (2006) A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum. J Cogn Neurosci 18(6):974–989

    PubMed  Google Scholar 

  • Nieder A, Freedman DJ, Miller EK (2002) Representation of the quantity of visual items in the primate prefrontal cortex. Science 297(5587):1708–1711

    PubMed  CAS  Google Scholar 

  • Ninokura Y, Mushiake H, Tanji J (2003) Representation of the temporal order of visual objects in the primate lateral prefrontal cortex. J Neurophysiol 89(5):2868–2873

    PubMed  Google Scholar 

  • Okuda J, Fujii T, Ohtake H, Tsukiura T, Tanji K, Suzuki K, Kawashima R, Fukuda H, Itoh M, Yamadori A (2003) Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. Neuroimage 19:1369–1380

    PubMed  Google Scholar 

  • Ongür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460(3):425–449

    PubMed  Google Scholar 

  • Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616

    PubMed  CAS  Google Scholar 

  • Penn DC, Povinelli DJ (2007) On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’. Philos Trans R Soc Lond B Biol Sci 362(1480):731–744

    PubMed  Google Scholar 

  • Petrides M (2000) Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. J Neurosci 20(19):7496–7503

    PubMed  CAS  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 360(1456):781–795

    PubMed  Google Scholar 

  • Petrides M, Pandya DN (2004) The frontal cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier Academic Press, San Diego, pp 950–972

    Google Scholar 

  • Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 27(43):11573–11586

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandyam DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Pollmann S, Manginelli AA (2009) Anterior prefrontal involvement in implicit contextual change detection. Front Hum Neurosci 3:28

    PubMed  Google Scholar 

  • Raby CR, Alexis DM, Dickinson A, Clayton NS (2007) Planning for the future by western scrub-jays. Nature 445(7130):919–921

    PubMed  CAS  Google Scholar 

  • Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10(10):724–735

    PubMed  CAS  Google Scholar 

  • Ramnani N, Owen AM (2004) Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat Rev Neurosci 5(3):184–194

    PubMed  CAS  Google Scholar 

  • Raven JC (1938) Progressive matrices: a perceptual test of intelligence. H.K. Lewis, London

    Google Scholar 

  • Rilling J (2006) Human and nonhuman primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15:66–77

    Google Scholar 

  • Rizzolatti G, Riggio L, Dascola I, Umilta C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25(1A):31–40

    PubMed  CAS  Google Scholar 

  • Robin N, Holyoak KJ (1995) Relational complexity and the functions of prefrontal cortex. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT, Cambridge, MA, pp 987–997

    Google Scholar 

  • Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8(9):410–417

    PubMed  CAS  Google Scholar 

  • Saito N, Mushiake H, Sakamoto K, Itoyama Y, Tanji J (2005) Representation of immediate and final behavioral goals in the monkey prefrontal cortex during an instructed delay period. Cereb Cortex 15(10):1535–1546

    PubMed  Google Scholar 

  • Sanides F (1962) Die Architektur des menschlichen Stirnhirns. Monogr Ges Neurol Psychatr 98:1–203

    CAS  Google Scholar 

  • Schacter DL, Addis DR (2007) On the constructive episodic simulation of past and future events. Behav Brain Sci 30(3):331–332

    Google Scholar 

  • Schacter DL, Addis DR, Buckner RL (2007) Remembering the past to imagine the future: the prospective brain. Nat Rev Neurosci 8(9):657–661

    PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(3):630–653

    PubMed  Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8(2):242–252

    PubMed  CAS  Google Scholar 

  • Schubotz RI (1999) Instruction differentiates the processing of temporal and spatial sequential patterns: Evidence from slow wave activity in humans. Neurosci Lett 265:1–4

    PubMed  CAS  Google Scholar 

  • Schubotz RI (2004) Human premotor cortex: Beyond motor performance. MPI Series in Human Cognitive and Brain Sciences, vol. 50, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig

    Google Scholar 

  • Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11(5):211–218

    PubMed  Google Scholar 

  • Schubotz RI, von Cramon DY (2003) Functional-anatomical concepts on human premotor cortex: Evidence from fMRI and PET studies. NeuroImage 20:S120–S131

    PubMed  Google Scholar 

  • Schwartz BL, Evans S (2001) Episodic memory in primates. Am J Primatol 55(2):71–85

    PubMed  CAS  Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38(2):317–332

    PubMed  CAS  Google Scholar 

  • Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32(4):375–388

    PubMed  CAS  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114(3):224–241

    PubMed  CAS  Google Scholar 

  • Sherwood CC, Holloway RL, Semendeferi K, Hof PR (2005) Is prefrontal white matter enlargement a human evolutionary specialization? Nat Neurosci 8(5):537–538

    PubMed  CAS  Google Scholar 

  • Shima K, Tanji J (2000) Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J Neurophysiol 84:2148–2160

    PubMed  CAS  Google Scholar 

  • Smaers JB, Schleicher A, Zilles K, Vinicius L (2010) Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS One 5(2):e9123

    PubMed  Google Scholar 

  • Suddendorf T, Busby J (2005) Making decisions with the future in mind: developmental and comparative identification of mental time travel. Learn Motiv 36(2):110–125

    Google Scholar 

  • Suddendorf T, Corballis MC (2007) The evolution of foresight: what is mental time travel, and is it unique to humans? Behav Brain Sci 30(3):299–313

    PubMed  Google Scholar 

  • Suddendorf T, Corballis MC, Collier-Baker E (2009) How great is great ape foresight? Anim Cogn 12(5):751–754

    PubMed  Google Scholar 

  • Sujazow O, Schütte C, Derrfuss J, Melzer C, Vogeley K, Amunts K, von Cramon D Y., Tittgemeyer M (in press) Connectivity-based cortex parcellation of the anterior prefrontal cortex. NeuroImage (Suppl)

    Google Scholar 

  • Szpunar KK, Watson JM, McDermott KB (2007) Neural substrates of envisioning the future. Proc Natl Acad Sci USA 104(2):642–647

    PubMed  CAS  Google Scholar 

  • Tanji J, Shima K, Mushiake H (2007) Concept-based behavioral planning and the lateral prefrontal cortex. Trends Cogn Sci 11(12):528–534

    PubMed  Google Scholar 

  • Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T (2008) Brain size and folding of the human cerebral cortex. Cereb Cortex 18:2352–2357

    PubMed  Google Scholar 

  • Tsujimoto S, Genovesio A, Wise SP (2010) Evaluating self-generated decisions in frontal pole cortex of monkeys. Nat Neurosci 13(1):120–126

    PubMed  CAS  Google Scholar 

  • Tulving E, Kim A (2007) The medium and the message of mental time travel. Behav Brain Sci 30:334–335

    Google Scholar 

  • Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30:829–858

    PubMed  Google Scholar 

  • Van Veen V, Carter CS (2006) Error detection, correction, and prevention in the brain: a brief review of data and theories. Clin EEG Neurosci 37(4):330–335

    PubMed  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–462

    Google Scholar 

  • Volz KG, von Cramon DY (2009) How the orbitofrontal cortex contributes to decision making – a view from neuroscience. Prog Brain Res 174:61–71

    PubMed  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Google Scholar 

  • Wallis JD, Miller EK (2003) From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol 90:1790–1806

    PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411(6840):953–956

    PubMed  CAS  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126(3):315–335

    PubMed  CAS  Google Scholar 

  • Wise S (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    PubMed  CAS  Google Scholar 

  • Wise SP (2008) Forward frontal fields: phylogeny and fundamental function. Trends Neurosci 31(12):599–608

    PubMed  CAS  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific Publications, Oxford, pp 3–70

    Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann HJ (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179:173–179

    CAS  Google Scholar 

  • Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1989) Gyrification in the cerebral cortex of primates. Brain Behav Evol 34:143–150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I want to cordially thank Marc Tittgemeyer for helpful and inspiring input on area 10 structure and function, D. Yves von Cramon for sharing his exceptional knowledge of and fascination in the brain, Katja Kornysheva and Kirsten Volz for prudent comments on ideas and the manuscript, Maria Golde, Anne Kühn, Andreja Bubic, Anna Abraham, and Felix Haarmann for fruitful experimental collaboration, and Andrea Gast-Sandmann for her great spontaneous and elaborate support when creating Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricarda I. Schubotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schubotz, R.I. (2011). Long-Term Planning and Prediction: Visiting a Construction Site in the Human Brain. In: Welsch, W., Singer, W., Wunder, A. (eds) Interdisciplinary Anthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11668-1_4

Download citation

Publish with us

Policies and ethics