Skip to main content

Stabilizing Fast Waves

  • Chapter
  • First Online:
Numerical Techniques for Global Atmospheric Models

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 80))

Abstract

The atmosphere transmits wavelike signals at a wide range of speeds. Rapidly moving, physically insignificant waves can impose very strict time-step limitations on numerical methods in order to ensure the integrations remain stable. Sound waves, for example, travel very rapidly but are of essentially no meteorological significance, and it is not practical to simulate most atmospheric circulations using the very short time steps required for the accurate and stable integration of the sound waves. This chapter reviews techniques for circumventing such time step restrictions, thereby allowing the step size to be chosen to ensure the accuracy and stability of the physically significant components of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asselin, R. (1972). Frequency filter for time integrations. Mon. Wea. Rev.100, 487–490.

    Article  Google Scholar 

  2. Boyd, J. P. (1989). Chebyshev and Fourier Spectral Methods. Berlin: Springer-Verlag. 798 p.

    Google Scholar 

  3. Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Math. Comp.22, 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  4. Durran, D. R. (1999). Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New York: Springer-Verlag. 465 p.

    Google Scholar 

  5. Durran, D. R. (2008). A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J. Fluid Mech.601, 365–379.

    Article  MATH  MathSciNet  Google Scholar 

  6. Durran, D. R. and A. Arakawa (2007). Generalizing the boussinesq approximation to stratified compressible flow. Comptes Rendus Mécanique335, 655–664.

    Google Scholar 

  7. Durran, D. R. and J. B. Klemp (1983). A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev.111, 2341–2361.

    Article  Google Scholar 

  8. Gassmann, A. (2005). An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models. Meteorol. Atmos. Phys.88, 23–38.

    Article  Google Scholar 

  9. Golub, G. H. and C. F. van Loan (1996). Matrix Computations (Third ed.). Baltimore: John-Hopkins University Press. 694 p.

    Google Scholar 

  10. Karniadakis, G. E., M. Israeli, and S. Orszag (1991). High-order splitting methods for the incompressible Navier-Stokes equations. J. Comp. Phys.97, 414–443.

    Google Scholar 

  11. Klemp, J. B. and R. Wilhelmson (1978). The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci.35, 1070–1096.

    Google Scholar 

  12. Kwizak, M. and A. J. Robert (1971). A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon. Wea. Rev.99, 32–36.

    Google Scholar 

  13. Lipps, F. and R. Hemler (1982). A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci.29, 2192–2210.

    Google Scholar 

  14. Ogura, Y. and N. Phillips (1962). Scale analysis for deep and shallow convection in the atmosphere. J. Atmos. Sci.19, 173–179.

    Google Scholar 

  15. Orszag, S. A., M. Israeli, and M. O. Deville (1986). Boundary conditions for incompressible flows. J. Scientific Comp.1, 75–111.

    Article  MATH  Google Scholar 

  16. Park, S.-H. and T.-Y. Lee (2009). High-order time-integration schemes with explicit time- splitting methods. Mon. Wea. Rev.137, 4047–4060.

    Google Scholar 

  17. Skamarock, W. C. and J. B. Klemp (1992). The stability of time-split numerical methods for the hydrostatic and nonhydrostatic elastic equations. Mon. Wea. Rev.120, 2109–2127.

    Article  Google Scholar 

  18. Tapp, M. C. and P. W. White (1976). A non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc.102, 277–296.

    Google Scholar 

  19. Tatsumi, Y. (1983). An economical explicit time integration scheme for a primitive model. J. Meteor. Soc. Japan61, 269–287.

    Google Scholar 

  20. Témam, R. (1969). Sur l’approximation de la solution des équations Navier-Stokes par la méthode des pas fractionnaires. Archiv. Ration. Mech. Anal.33, 377–385.

    MATH  Google Scholar 

  21. Wicker, L. J. (2009). A two-step Adams–Bashforth–Moulton split-explicit integrator for compressible atmospheric models. Mon. Wea. Rev.137, 3588–3595.

    Article  Google Scholar 

  22. Wicker, L. J. and W. C. Skamarock (2002). Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev.130, 2088–2097.

    Article  Google Scholar 

  23. Williams, P. D. (2009). A proposed modification to the Robert–Asselin time filter. Mon. Wea. Rev.137, 2538–2546.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale R. Durran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durran, D.R. (2011). Stabilizing Fast Waves. In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds) Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11640-7_6

Download citation

Publish with us

Policies and ethics