Skip to main content

Conservation of Mass and Energy for the Moist Atmospheric Primitive Equations on Unstructured Grids

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 80))

Abstract

The primitive variable formulation of the moist hydrostatic equations conserves mass and moist total energy due to the property that the divergence and gradient operators are adjoints. Any compatible numerical method, which has a discrete analog of this property will conserve a discrete mass and total energy. We demonstrate this using aqua-planet simulations performed with CAM-HOMME (NCAR’s Community Atmospheric Model with the High-Order Method Modeling Environment dynamical core). CAM-HOMME uses a compatible numerical method on arbitrary unstructured quadrilateral grid. The equations described here are the full set of dynamical equations used by CAM. Aqua-planet simulations use the full suite of physics parametrizations as well. The only simplification is the use of idealized surface conditions. We report on the magnitude of the total energy budget in the dynamical core including estimates for the non-adiabatic processes. The practice of fixing dry total energy as opposed to the conserved total moist energy is shown to generate a forcing of − 0. 56 W/m2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa A, Lamb V (1977) Computational design of the basic dynamical processes in the UCLA general circulation model. In: Chang J (ed) Methods in computational physics. Vol. 17: General circulation models of the atmosphere, Academic Press, pp 174–264

    Google Scholar 

  2. Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155, DOI 10.1017/S0962492906210018

    Article  MATH  MathSciNet  Google Scholar 

  3. Bochev P, Hyman M (2006) Principles of compatible discretizations. In: Arnold DN, Bochev P, Lehoucq R, Nicolaides R, Shashkov M (eds) Compatible Discretizations, Proceedings of IMA Hot Topics Workshop on Compatible Discretizations, Springer Verlag, vol IMA 142, pp 89–120

    Google Scholar 

  4. Bochev P, Ridzal D (2008) Rehabilitation of the lowest-order Raviart-Thomas element on quadrilateral grids. SIAM J Numer Anal 47(1):487–507

    Article  MathSciNet  Google Scholar 

  5. Browning GL, Hack JJ, Swarztrauber PN (1989) A Comparison of Three Numerical Methods for Solving Differential Equations on the Sphere. Mon Wea Rev 117(5):1058–1075

    Article  Google Scholar 

  6. Calhoun DA, Helzel C, LeVeque RJ (2008) Logically rectangular finite volume grids and methods for ‘circular’ and ‘spherical’ domains. SIAM Rev 50:723–752

    Article  MATH  MathSciNet  Google Scholar 

  7. Cliffe KA (1981) On conservative finite element formulations of the inviscid Boussinesq equations. International Journal for Numerical Methods in Fluids 1:117–127 ins et al.(2004)Collins, Rasch, Boville, Hack, McCaa, Williamson, Kiehl, Briegleb, Bitz, Lin, Zhang, and Dai

    Google Scholar 

  8. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb BP, Bitz CM, Lin SJ, Zhang M, Dai Y (2004) Description of the NCAR Community Atmosphere Model (CAM3.0). NCAR Technical Note NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado, 214 pp., available from http://www.ucar.edu/library/collections/technotes/technotes.jsp

  9. Dennis J, Fournier A, Spotz WF, St-Cyr A, Taylor MA, Thomas SJ, Tufo H (2005) High resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int J High Perf Comput Appl 19:225–235

    Article  Google Scholar 

  10. Gassmann A, Herzog HJ (2008) Towards a consistent numerical compressible non-hydrostatic model using generalized Hamiltonian tools. Quart J Roy Meteor Soc 134(635):1597–1613, DOI 10.1002/qj.297

    Article  Google Scholar 

  11. Gent PR, Yeager SG, Neale RB, Levis S, Bailey DA (2009) Improvements in a half degree atmosphere/land version of the ccsm. Clim Dyn DOI 10.1007/s00382-009-0614-8

    Google Scholar 

  12. Hughes TJR, Engel G, Mazzei L, Larson MG (2000) The continuous Galerkin method is locally conservative. J Comput Phys 163:467–488, DOI 10.1006/jcph.2000.6577

    Article  MATH  MathSciNet  Google Scholar 

  13. Hyman JM, Shashkov M (1997a) Adjoint operators for the natural discretizations of the divergence, gradient, and curl on logically rectangular grids. Appl Numer Math 25:413–442

    Article  MATH  MathSciNet  Google Scholar 

  14. Hyman JM, Shashkov M (1997b) Natural discretizations for the divergence, gradient and curl on logically rectangular grids. International Journal of Applied Numerical Mathematics 33:81–104

    MATH  MathSciNet  Google Scholar 

  15. Kasahara A (1974) Various vertical coordinate systems used for numerical weather prediction. Mon Wea Rev 102:509–522

    Article  Google Scholar 

  16. Laprise R, Girard C (1990) A spectral general circulation model using a piecewise-constant finite-element representation on a hybrid vertical coordinate system. J Climate 3:32–52

    Article  Google Scholar 

  17. Lin SJ (2004) A vertically Lagrangian finite-volume dynamical core for global models. Mon Wea Rev 132:2293–2397

    Article  Google Scholar 

  18. Margolin LG, Shashkov M (2008) Finite volume methods and the equations of finite scale: A mimetic approach. Int J Numer Meth Fluids 56(8):991–1002, DOI 10.1002/fld.1592

    Article  MATH  MathSciNet  Google Scholar 

  19. Margolin LG, Tarwater AE (1987) A diffusion operator for Lagrangian codes. In: Lewis R, Morgan K, Habashi W (eds) Numerical Methods for Heat Transfer, Pineridge Press, Swansea, pp 1252–1260

    Google Scholar 

  20. Neale RB, Hoskins BJ (2000a) A standard test case for AGCMs including their physical parametrizations: I: The proposal. Atmos Sci Lett 1:101–107, DOI 10.1006/asle.2000.0022

    Article  Google Scholar 

  21. Neale RB, Hoskins BJ (2000b) A standard test case for AGCMs including their physical parametrizations: II: Results for the Met Office Model. Atmos Sci Lett 1:108–114, DOI 10.1006/asle.2000.0024

    Article  Google Scholar 

  22. Nicolaides R (1992) Direct discretization of planar div-curl problems. SIAM J Numer Anal pp 32–56

    Google Scholar 

  23. Phillips NA (1957) A map projection system suitable for large-scale numerical weather prediction. J Meteor Soc Japan, 75th Anniversary Volume pp 262–267

    Google Scholar 

  24. Purser RJ, Rančić M (1997) Conformal octagon: An attractive framework for global models offering quasi-uniform regional enhancement of resolution. Meteorology and Atmospheric Physics 62:33–48, DOI 10.1007/BF01037478

    Article  Google Scholar 

  25. Sadourny R (1972) Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon Wea Rev 100(2):136–144

    Article  Google Scholar 

  26. Sadourny RA, Arakawa A, Mintz Y (1968) Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon Wea Rev 96:351–356

    Article  Google Scholar 

  27. Salmon R (2004) Poisson-bracket approach to the construction of energy- and potential-enstrophy-conserving algorithms for the shallow-water equations. J Atmos Sci 61:2016–2036

    Article  MathSciNet  Google Scholar 

  28. Salmon R (2005) Poisson-bracket approach to the construction of energy- and potential-enstrophy-conserving algorithms for the shallow-water equations. Nonlinearity 18:R1–R16

    Article  MATH  MathSciNet  Google Scholar 

  29. Salmon R (2007) A general method for conserving energy and potential enstrophy in shallow-water models. J Atmos Sci 64:515–531

    Article  Google Scholar 

  30. Samarskiĭ AA, Tishkin VF, Favorskiĭ AP, Shashkov MY (1981) Operator-difference schemes. Differentsialnye Uravneniya 17(7):1317–1327, 1344

    Google Scholar 

  31. Satoh M (2004) Atmospheric circulation dynamics and general circulation models, 1st edn. Springer (Praxis), 643 pp.

    Google Scholar 

  32. Shashkov M (1996) Conservative Finite Difference Methods on General Grids. CRC-Press, Boca Raton, FL, 384 pages

    Google Scholar 

  33. Shashkov M, Steinberg S (1995) Support-operator finite-difference algorithms for general elliptic problems. J Comput Phys 118:131–151

    Article  MATH  MathSciNet  Google Scholar 

  34. Simmons AJ, Burridge DM (1981) An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon Wea Rev 109:758–766

    Article  Google Scholar 

  35. Simmons AJ, Strüfing R (1981) An energy and angular-momentum conserving finite-difference scheme, hybrid coordinates and medium-range weather prediction. Tech. Rep. 28, European Centre for Medium-Range Weather Forecasts, Reading, U.K., 68 pages

    Google Scholar 

  36. Staniforth A, Wood N, Girard C (2003) Energy and energy-like invariants for deep non-hydrostatic atmospheres. Quart J Roy Meteor Soc 129:3495–3499

    Article  Google Scholar 

  37. Taylor MA, Fournier A (2010) A compatible and conservative spectral element method on unstructured grids. J Comput Phys 229:5879–5895, DOI 10.1016/j.jcp.2010.04.008

    Article  MATH  MathSciNet  Google Scholar 

  38. Taylor MA, Edwards J, Thomas S, Nair R (2007) A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. J Phys Conf Ser 78(012074), DOI 10.1088/1742-6596/78/1/012074

    Google Scholar 

  39. Taylor MA, Edwards J, St-Cyr A (2008) Petascale atmospheric models for the community climate system model: New developments and evaluation of scalable dynamical cores. J Phys Conf Ser 125(012023), DOI 10.1088/1742-6596/125/1/012023

    Google Scholar 

  40. Taylor MA, St-Cyr A, Fournier A (2009) A non-oscillatory advection operator for the compatible spectral element method. In: Computational Science ICCS 2009 Part II, Lecture Notes in Computer Science 5545, Springer, Berlin / Heidelberg, pp 273–282

    Google Scholar 

  41. Thuburn J (2008) Some conservation issues for the dynamical cores of NWP and climate models. J Comput Phys 227:3715–3730

    Article  MATH  MathSciNet  Google Scholar 

  42. Vallis, G. K. (2006) Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, Cambridge, U.K., 745 pages

    Google Scholar 

  43. Williamson DL (1968) Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20:642–653

    Article  Google Scholar 

  44. Williamson DL (2002) Time-split versus process-split coupling of parameterization and dynamical core. Mon Wea Rev 130:2024–2041

    Article  Google Scholar 

  45. Williamson DL (2007) The evolution of dynamical cores for global atmospheric models. J Meteor Soc Japan 85B:242–269

    Article  Google Scholar 

  46. Williamson DL, Olson JG (1994) Climate simulations with a semi-Lagrangian version of the NCAR community climate model. Mon Wea Rev 122:1594–1610

    Article  Google Scholar 

  47. Williamson DL, Olson J, Jablonowski C (2009) Two dynamical core formulation flaws exposed by a baroclinic instability test case. Mon Wea Rev 137:790–796

    Article  Google Scholar 

  48. Yakimiw E, Girard C (1987) Experimental results on the accuracy of a global forecast spectral mode1 with different vertical discretization schemes. Atmosphere-Ocean 25(3):304–325

    Google Scholar 

  49. Zerroukat M, Wood N, Staniforth A (2005) A monotonic and positive-definite filter for a semi-Lagrangian inherently conserving and efficient (SLICE) scheme. Quart J Roy Meteor Soc 131(611):2923–2936, DOI 10.1256/qj.04.97

    Article  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for many useful and detailed comments and P.H. Lauritzen for the vertical coordinate figure. This work supported by DOE/BER grant 06-13194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, M.A. (2011). Conservation of Mass and Energy for the Moist Atmospheric Primitive Equations on Unstructured Grids. In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds) Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11640-7_12

Download citation

Publish with us

Policies and ethics