Skip to main content

Voronoi Tessellations and Their Application to Climate and Global Modeling

  • Chapter
  • First Online:
Numerical Techniques for Global Atmospheric Models

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 80))

Abstract

We review the use of Voronoi tessellations for grid generation, especially on the whole sphere or in regions on the sphere. Voronoi tessellations and the corresponding Delaunay tessellations in regions and surfaces on Euclidean space are defined and properties they possess that make them well-suited for grid generation purposes are discussed, as are algorithms for their construction. This is followed by a more detailed look at one very special type of Voronoi tessellation, the centroidal Voronoi tessellation (CVT). After defining them, discussing some of their properties, and presenting algorithms for their construction, we illustrate the use of CVTs for producing both quasi-uniform and variable resolution meshes in the plane and on the sphere. Finally, we briefly discuss the computational solution of model equations based on CVTs on the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M (2005) Variational tetrahedral meshing. In: Proceedings of SIGGRAPH, pp 617–625

    Google Scholar 

  2. Arakawa A (1966) Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. J Comput Phys 1:119–143

    Article  MATH  Google Scholar 

  3. Arakawa A, Lamb V (1977) Compuational design of the basic dynamical processes in the UCLA general circulation model. J Comput Phys 17:173–265

    MathSciNet  Google Scholar 

  4. Arakawa A, Lamb V (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Wea Rev 109:18–36

    Article  Google Scholar 

  5. Augenbaum J (1984) A lagrangian method for the shallow water equations based on a voronoi mesh - one dimensional results. J Comput Phys 53:240–265

    Article  MATH  MathSciNet  Google Scholar 

  6. Augenbaum J,, Peskin C (1985) On the construction of the Voronoi mesh on the sphere. J Comput Phys 59:177–192

    Article  MATH  MathSciNet  Google Scholar 

  7. Barnes E, Sloane N (1983) The optimal lattice quantizer in three dimensions. SIAM J Algeb Disc Meth 4:31–40

    MathSciNet  Google Scholar 

  8. Bentley J, Weide B, Yao A (1980) Optimal expected-time algorithms for cloest point problems. ACM Trans Math Soft 6:563–580

    Article  MATH  MathSciNet  Google Scholar 

  9. Boissonnat J, Oudot S (2005) Provably good sampling and meshing of surfaces. Graph Models 67:405–451

    Article  MATH  Google Scholar 

  10. Chynoweth S, Sewell M (1990) Mesh duality and Legendre duality. Proc R Soc London A 428:351–377

    Article  MATH  MathSciNet  Google Scholar 

  11. Cignoni P, Montani C, Scopigno R (1998) Dewall: A fast divide and conquer delaunay triangulation algorithm in e d. Computer-Aided Design 30:333–341

    Article  MATH  Google Scholar 

  12. Cooley J, Tukey J (1965) An algorithm for the machine calculation of complex Fourier series. Math Comp 19:197–301

    Article  MathSciNet  Google Scholar 

  13. Delaunay B (1928) Sur la sphère vide. In: Proceedings of the International Mathematical Congress, pp 695–700

    Google Scholar 

  14. Delaunay B (1934) Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7:793–800

    Google Scholar 

  15. Dirichlet G (1850) Uber die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J Reine Angew Math 40:209–227

    Article  MATH  Google Scholar 

  16. Du Q, Emelianenko M (2006) Acceleration schemes for computing the centroidal Voronoi tessellations. Numer Linear Alg Appl 13:173–192

    Article  MATH  MathSciNet  Google Scholar 

  17. Du Q, Emelianenko M (2008) Uniform convergence of a nonlinear energy-based multilevel quantization scheme via centroidal Voronoi tessellations. SIAM J Numer Anal 46:1483–1502

    Article  MATH  MathSciNet  Google Scholar 

  18. Du Q, Ju L (2005) Finite volume methods on spheres and spherical centroidal Voronoi meshes. SIAM J Numer Anal 43:1673–1692

    Article  MATH  MathSciNet  Google Scholar 

  19. Du Q, Wang D (2003) Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. Int J Numer Methods Engrg 56:1355–1373

    Article  MATH  MathSciNet  Google Scholar 

  20. Du Q, Wang D (2005) On the optimal centroidal Voronoi tessellations and Gersho’s conjecture in the three dimensional space. Comput Math Appl 49:1355–1373

    Article  MATH  MathSciNet  Google Scholar 

  21. Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41:637–676

    Article  MATH  MathSciNet  Google Scholar 

  22. Du Q, Gunzburger M, Ju L (2003a) Constrained centroidal Voronoi tessellations for surfaces. SIAM J Sci Comput 24:1488–1506

    Article  MATH  MathSciNet  Google Scholar 

  23. Du Q, Gunzburger M, Ju L (2003b) Voronoi-based finite volume methods, optimal Voronoi meshes and PDEs on the sphere. Comput Meth Appl Mech Engrg 192:3933–3957

    Article  MATH  MathSciNet  Google Scholar 

  24. Du Q, Emelianenko M, Ju L (2006) Convergence of the lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J Numer Anal 44:102–119

    Article  MATH  MathSciNet  Google Scholar 

  25. Edelsbrunner H, Shah N (1996) Incremental topological flipping works for regular triangulations. Algorithmica 15:223–241

    Article  MATH  MathSciNet  Google Scholar 

  26. Emelianenko M, Ju L, Rand A (2008) Nondegeneracy and weak global convergence of the Lloyd algorithm in d. SIAM J Numer Anal 46:1423–1441

    Article  MATH  MathSciNet  Google Scholar 

  27. Field D (2000) Quantitative measures for initial meshes. Int J Numer Meth Engrg 47:887–906

    Article  MATH  Google Scholar 

  28. Fortune S (1986) A sweepline algorithm for Voronoi diagrams. In: Proceedings of the Second Ann. Symp. Comput. Geom., pp 313–322

    Google Scholar 

  29. Freitag L, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Engrg 40:3979–4002

    Article  MATH  MathSciNet  Google Scholar 

  30. Gersho A (1979) Asymptotically optimal block quantization. IEEE Trans Inform Theory 25:373–380

    Article  MATH  MathSciNet  Google Scholar 

  31. Gersho A, Gray R (1992) Vector Quantization and Signal Compression. Kluwer, Boston

    MATH  Google Scholar 

  32. Guiba L, Knuth D, Sharir M (1992) Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7:381–413

    Article  MathSciNet  Google Scholar 

  33. Guibas L, Stolfi J (1985) Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans Graphics 4:74–123

    Article  MATH  Google Scholar 

  34. Hartigan J (1975) Clustering Algorithms. Wiley, New York

    MATH  Google Scholar 

  35. Heikes R, Randall D (1995a) Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part i: basic design and results of tests. Mon Wea Rev 123:1862–1880

    Google Scholar 

  36. Heikes R, Randall D (1995b) Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part ii. a detailed description of the grid and an analysis of numerical accuracy. Mon Wea Rev 123:1881–1887

    Google Scholar 

  37. Ju L (2007) Conforming centroidal Voronoi Delaunay triangulation for quality mesh generation. Inter J Numer Anal Model 4:531–547

    MATH  MathSciNet  Google Scholar 

  38. Ju L, Du Q, Gunzburger M (2002a) Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations. Para Comput 28:1477–1500

    Article  MATH  MathSciNet  Google Scholar 

  39. Ju L, Gunzburger M, Zhao W (2002b) Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi-Delaunay triangulations. SIAM J Sci Comput 28:2023–2053

    Article  MathSciNet  Google Scholar 

  40. Kanungo T, Mount D, Netanyahu N, Piatko C, Silverman R, Wu A (2002) An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans Pattern Anal Mach Intel 24:881–892

    Article  Google Scholar 

  41. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392

    Article  MathSciNet  Google Scholar 

  42. Kasahara A, Washington W (1967) NCAR global general circulation model of the atmosphere. Mon Wea Rev 95:389–402

    Article  Google Scholar 

  43. Kittel C (2004) Introduction to Solid State Pgysics. Wiley, New York

    Google Scholar 

  44. Lee D, Schachter B (1980) Two algorithms for constructing a Delaunay triangulation. Int J Inform Sci 9:219–242

    Article  MATH  MathSciNet  Google Scholar 

  45. Lipscomb W, Ringler T (2005) An incremental remapping transport scheme on a spherical geodesic grid. Mon Wea Rev 133:2335–2350

    Article  Google Scholar 

  46. Liu Y, Wang W, Levy B, Sung F, Yan DM (2009) On centroidal Voronoi tessellation - Energy smoothness and fast computation. ACM Trans Graphics 28:1–17

    Google Scholar 

  47. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28:129–137

    Article  MATH  MathSciNet  Google Scholar 

  48. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symp. Math. Stat. and Prob., Ed. by L. LeCam and J. Neyman, vol I, pp 181–197

    Google Scholar 

  49. Masuda Y, Ohnishi H (1986) An integration scheme of the primitive equations model with an icosahedral-hexagonal grid system and its application to the shallow water equations. In: Short-and Medium-Range Numerical Weather Prediction, Ed. by T. Matsuno, Universal Academy Press, pp 317–326

    Google Scholar 

  50. McKay M, Beckman WCR (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245

    Article  MATH  MathSciNet  Google Scholar 

  51. Newman D (1982) The hexagon theorem. IEEE Trans Inform Theo 28:137–139

    Article  MATH  Google Scholar 

  52. Nguyen H, Burkardt J, Gunzburger M, Ju L, Saka Y (2009) Constrained CVT meshes and a comparison of triangular mesh generators. Comp Geom: Theory Appl 42:1–19

    MATH  MathSciNet  Google Scholar 

  53. Niederreiter H (1992) Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia

    MATH  Google Scholar 

  54. Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Second Edition, Wiley, Chichester

    MATH  Google Scholar 

  55. Persson PO, Strang G (2004) A simple mesh generator in Matlab. SIAM Rev 46:329–345

    Article  MATH  MathSciNet  Google Scholar 

  56. Randall D (1994) Geostrophic adjustment and the finite-difference shallow water equations. Mon Wea Rev 122:1371–1377

    Article  Google Scholar 

  57. Renka R (1997) Algorithm 772. STRIPACK: Delaunay triangulation and Voronoi diagrams on the surface of a sphere. ACM Trans Math Soft 23:416–434

    MATH  MathSciNet  Google Scholar 

  58. Ringler T, Randall D (2002) A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid. Mon Wea Rev 130:1397–1410

    Article  Google Scholar 

  59. Ringler T, Heikes R, Randall D (2000) Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon Wea Rev 128:2471–2490

    Article  Google Scholar 

  60. Ringler T, Ju L, Gunzburger M (2008) A multi-resolution method for climate system modeling. Ocean Dynamics 58:475–498

    Article  Google Scholar 

  61. Ringler T, Thuburn J, Klemp J, Skamarock W (2010) A unified approach to energy conservation and potential vorticity dynamics on arbitrarily structured c-grids. J Comput Phys to appear

    Google Scholar 

  62. Rogers C (1964) Packing and Covering. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  63. Ross S (1998) A First Course in Probability. Prentice Hall, Englewood Cliffs

    Google Scholar 

  64. Sadourny R, Arakawa A, Mintz Y (1968) Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon Wea Rev 96:351–356

    Article  Google Scholar 

  65. Saltelli A, Chan K, Scott E (2004) Sensitivity Analysis. Wiley, Chichester

    MATH  Google Scholar 

  66. Sedgewick R (1983) Algorithms. Addison Wesley

    MATH  Google Scholar 

  67. Sewell M (2002) Some applications of transformation theory in mechanics. In: Large-Scale Atmosphere-Ocean Dynamics, Ed. by J. Norbury and I. Roulstone, vol II, Chapter 5

    Google Scholar 

  68. Shamos M, Hoey D (1975) Closest-point problems. In: Proceedings ot the Sixteenth IEEE Annual Symposium on Foundations of Computer Science, pp 151–162

    Google Scholar 

  69. Smith R, Maltrud M, Bryan F, Hecht M (2000) Numerical simulation of the north atlantic ocean at 1 ∕ 10 ∘ . J Phys Ocean 20:1532–1561

    Article  Google Scholar 

  70. Snow J (1855) On the Mode of Communication of Cholera. Churchill Livingstone, London

    Google Scholar 

  71. Thuburn J, Ringler T, Klemp J, Skamarock W (2009) Numerical representation of geostrophic modes on arbitrarily structured c-grids. J Comput Phys 228:8321–8335

    Article  MATH  MathSciNet  Google Scholar 

  72. Tomita H, Tsugawa M, Satoh M, Goto K (2001) Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J Comput Phys 174:579–613

    Article  MATH  Google Scholar 

  73. Tomita H, Miura H, Iga S, Nasuno T, Satoh M (2005) A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys Res Lett 32:L08,805

    Google Scholar 

  74. Voronoi G (1907) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Primiere Mémoire: Sur quelques prepriétés des formes quadratiques positives parfaites. J Reine Angew Math 133:97–178

    Google Scholar 

  75. Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième Mémoire: Recherches usr les parallélloèdres primitifs,. J Reine Angew Math 134:198–287

    MATH  Google Scholar 

  76. Weaver W, Shannon C (1963) The Mathematical Theory of Communication. University of Illinois Press, Champaign

    MATH  Google Scholar 

  77. Weller H (2009) Predicting mesh density for adaptive modelling of the global atmosphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367:4523–4542

    Article  MATH  MathSciNet  Google Scholar 

  78. Weller H, Weller H (2008) A high-order arbitrarily unstructured finite-volume model of the global atmosphere: Tests solving the shallow-water equations. Inter J Numer Meth Fluids 56: 1589–1596

    Article  MATH  MathSciNet  Google Scholar 

  79. Williamson D (1968) Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20:642–653

    Article  Google Scholar 

  80. Williamson D (1970) Integration of the primitive barotropic model over a spherical geodesic grid. Mon Wea Rev 98:512–520

    Article  Google Scholar 

  81. Williamson D, Drake J, Hack J, Jakob R, Swarztrauber P (2001) A standard test set for numerical approximations to the shallow water equations in spherical geometry. J Comput Phys 102: 211–224

    Article  MathSciNet  Google Scholar 

  82. Ziman J (1979) Principles of the Theory of Solids. Second Ed., Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy Office of Science Climate Change Prediction Program through grant numbers DE-FG02-07ER64431 and DE-FG02-07ER64432, and the US National Science Foundation under grant numbers DMS-0609575 and DMS-0913491.

The authors thank the reviewers and editors for the many helpful comments that resulted in substantial improvements to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ju, L., Ringler, T., Gunzburger, M. (2011). Voronoi Tessellations and Their Application to Climate and Global Modeling. In: Lauritzen, P., Jablonowski, C., Taylor, M., Nair, R. (eds) Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11640-7_10

Download citation

Publish with us

Policies and ethics