Skip to main content

Biological Aspects of Computer Virology

  • Conference paper

Abstract

Recent malware epidemics proved beyond any doubt that frightful predictions of fast-spreading worms have been well founded. While we can identify and neutralize many types of malicious code, often we are not able to do that in a timely enough manner to suppress its uncontrolled propagation. In this paper we discuss the decisive factors that affect the propagation of a worm and evaluate their effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aickelin, U., Greensmith, J.: Sensing danger: Innate immunology for intrusion detection. Information Security Technical Report 12, 218–227 (2007)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)

    Article  Google Scholar 

  3. Arce, I., Levy, E.: An analysis of the slapper worm. IEEE Security & Privacy 1(3), 82–87 (2003)

    Article  Google Scholar 

  4. Arora, A., Telang, R.: Economics of software vulnerability disclosure. IEEE Security & Privacy 3(1), 20–25 (2005)

    Article  Google Scholar 

  5. Barabási, A., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281, 69–77 (1999)

    Article  Google Scholar 

  6. Barry, J.: The Great Influenza. Penguin Group, New York (2005)

    Google Scholar 

  7. Burgess, M.: Probabilistic anomaly detection in distributed computer networks. Science of Computer Programming 1, 1–26 (2006)

    Article  Google Scholar 

  8. Burgess, M.: Biology, immunology and information security. Information Security Technical Reports 12, 192–199 (2007)

    Article  Google Scholar 

  9. Cohen, F.: Computer viruses – theory and experiments. Computers and Security 6, 22–35 (1987)

    Article  Google Scholar 

  10. Cohen, F.: A Short Course on Computer Viruses. Wiley Professional Computing. Wiley, Canada (1994)

    Google Scholar 

  11. DangerProject. The danger project (September 2008), http://www.dangertheory.com/

  12. Ebel, H., Mielsch, L., Bornloldt, S.: Scale-free topology of e-mail networks. Physical Review E 66(035103(R)) (September 2002)

    Google Scholar 

  13. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of ACM SIGCOMM, Cambridge, MA, USA, pp. 251–262 (1999)

    Google Scholar 

  14. Forrest, S., Hofmeyr, S., Somayaji, A.: Computer immunology. Communications of the ACM 40(10), 88–96 (1997)

    Article  Google Scholar 

  15. Forrest, S., Somayaji, A., Ackley, D.: Building diverse computer systems. In: IEEE 6th Workshop on Hot Topics in Operating Systems (1997)

    Google Scholar 

  16. Furnell, S., Ward, J.: The true computer parasite (June 2005), http://securityfocus.com/infocus/1838

  17. Geer, D.: Monopoly considered harmful. IEEE Security & Privacy 1(6), 14–16 (2003)

    Article  Google Scholar 

  18. Geer, D., Bace, R., Gutmann, P., Metzger, P., Pfleeger, C.P., Quarterman, J.S., Schneier, B.: Cyber insecurity: The cost of monopoly. Technical report, Computer & Communications Industry Association (2003)

    Google Scholar 

  19. Goel, S., Bush, S.: Biological models of security for virus propagation in computer networks. Login 29(6) (December 2004)

    Google Scholar 

  20. Goth, G.: Addressing the monoculture. IEEE Security & Privacy 1(6), 8–10 (2003)

    Google Scholar 

  21. Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Hofmeyr, S.: On the virulence of malware (June 2007), http://www.nthworld.org/archives/malware/index.htm

  23. Kephart, J.: How topology affects population dynamics. In: Proceedings of Artificial Life 3, New, Mexico, USA (June 1992)

    Google Scholar 

  24. Kephart, J., White, S.: Directed-graph epidemiological models of computer viruses. In: Proceedings of the 1991 Computer Society Symposium on Research in Security and Privacy, California, USA, pp. 343–361 (1991)

    Google Scholar 

  25. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, vol. 115, pp. 700–721 (1927)

    Google Scholar 

  26. Kim, H., Kang, I.: On the functional validity of the worm-killing worm. In: Proceedings of the 2004 IEEE International Conference on Communications, June 2004, vol. 4, pp. 1902–1906 (2004)

    Google Scholar 

  27. Leveille, J.: Epidemic spreading in technological networks. Hpl-2002-287, School of Cognitive and Computing Sciences, University of Sussex at Brighton, Bristol (October 2002)

    Google Scholar 

  28. Li, J., Knickerbocker, P.: Functional similarities between computer worms and bilogical pathogens. Computers & Security 26, 338–347 (2007)

    Article  Google Scholar 

  29. Matzinger, P.: The danger model: A renewed sense of self. Science 296, 301–305 (2002)

    Article  Google Scholar 

  30. MedicineNet. Definition of virulence (2008), http://www.medterms.com/script/main/art.asp?articlekey=6911 (December 2008)

  31. Medzhitov, R., Janeway, C.: Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002)

    Article  Google Scholar 

  32. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the slammer worm. IEEE Security & Privacy, 33–39 (July 2003)

    Google Scholar 

  33. Weaver, N., Ellis, D.: White worms don’t work. Login 31, 33–38 (2006)

    Google Scholar 

  34. Okamoto, T., Ishida, Y.: A distributed approach against computer viruses inspired by the immune system. IEICE Transaction on Communications E83-B, 908–915 (2000)

    Google Scholar 

  35. OneStat. Microsoft’s windows os global market share is more than 97 to onestat.com (2008), http://www.onestat.com/html/press-release-microsoft-windows-vista-global-usage-share-december-2008.html (May 2005)

  36. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Physical Review Letters 86, 3200–3203 (2001)

    Article  Google Scholar 

  37. Pattyn, S. (ed.): Ebola Virus Haemorrhagic Fever. Elsevier/North-Holland, Amsterdam (1977)

    Google Scholar 

  38. Pincus, J., Baker, B.: Beyond stack smashing: Recent advances in exploiting buffer overruns. IEEE Security & Privacy 2(4), 20–27 (2004)

    Article  Google Scholar 

  39. Rescorla, E.: Is finding security holes a good idea? IEEE Security & Privacy 3(1), 14–19 (2005)

    Article  Google Scholar 

  40. Shafi, K., Abbass, H.: Biologically-inspired complex adatpive systems approaches to network intrusion detection. Information Security Technical Report 12, 209–217 (2007)

    Article  Google Scholar 

  41. Shannon, C., Moore, D.: The spread of the witty worm. IEEE Security & Privacy 2(4), 46–50 (2004)

    Article  Google Scholar 

  42. Somayaji, A., Forrest, S.: Automated response using system-call delay. In: Nith USENIX security symposium (2000)

    Google Scholar 

  43. Somayaji, A., Hofmeyr, S., Forrest, S.: Principles of a computer immune system. In: Meeting on New Security Paradigms, Langdale, UK, September 23-26, 1997, pp. 75–82. ACM, New York (1998)

    Google Scholar 

  44. Staniford, S., Paxson, V., Weaver, N.: How to 0wn the internet in your spare time. In: Proceedings of the 11th USENIX Security Symposium, August 2002, pp. 149–167 (2002)

    Google Scholar 

  45. Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley, Upper Saddle River (2005)

    Google Scholar 

  46. Tanachaiwiwat, S., Helmy, A.: Modeling and analysis of worm interactions (war of the worms). In: Fourth International Conference on Broadband Communications, Networks and Systems, 2007. BROADNETS 2007, pp. 649–658 (2007)

    Google Scholar 

  47. Sabelis, M., Dieckmann, U., Metz, J., Sigmund, K. (eds.): Adatpive Studies in Dynamics of Infectious Diseases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  48. Vlachos, V., Androutsellis-Theotokis, S., Spinellis, D.: Security applications of peer-to-peer networks. Comput. Networks 45(2), 195–205 (2004)

    Article  Google Scholar 

  49. Vlachos, V., Raptis, A., Spinellis, D.: PROMISing steps towards computer hygiene. In: Furnel, S. (ed.) International Network Conference (INC2006), Plymouth, UK, July 2006, pp. 229–236 (2006)

    Google Scholar 

  50. Vlachos, V., Spinellis, D.: A PRoactive malware identification system based on the computer hygiene principles. Information Management and Computer Security 15(4), 295–312 (2007)

    Article  Google Scholar 

  51. Weaver, N., Paxson, V., Staniford, S.: A worst-case worm. In: Proceedings of the Third Annual Workshop on Economics and Information Security (WEIS 2004) (May 2004)

    Google Scholar 

  52. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: Large scale malicious code: A research agenda (May 2003), http://www.cs.berkeley.edu/~nweaver/largescalemaliciouscode.pdf (June 2005)

  53. Williams, P.D., Day, T.: Interactions between mortality sources and the evolution of parasite virulence. In: Proceedings of the Royal Society of London B, vol. 268, pp. 2331–2337 (2001)

    Google Scholar 

  54. Zelonis, K.: Avoiding the cyber pandemic: A public health approach to preventing malware propagation. Master’s thesis, Carnegie Mellon University (December 2004)

    Google Scholar 

  55. Zou, C., Gong, W., Towsley, D.: Code red worm propagation modeling and analysis. In: Proceedings of the 9th ACM Conference on Computer and Communication Security (CCS), Washington DC, USA (November 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Vlachos, V., Spinellis, D., Androutsellis-Theotokis, S. (2010). Biological Aspects of Computer Virology. In: Sideridis, A.B., Patrikakis, C.Z. (eds) Next Generation Society. Technological and Legal Issues. e-Democracy 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11631-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11631-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11629-2

  • Online ISBN: 978-3-642-11631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics