Skip to main content

Methoden der Trauma-Biomechanik

  • Chapter
  • First Online:
Trauma-Biomechanik

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 3070 Accesses

Zusammenfassung

Die Arbeit in der Trauma-Biomechanik wird durch einige Randbedingungen eingeschränkt, die in dieser Form in anderen Bereichen der Ingenieurwissenschaften und der Life Sciences nicht oder nur zu einem geringen Teil vorhanden sind. Experimente an Menschen, bei denen verletzungsinduzierende Belastungen auftreten können, sind ausgeschlossen. Tierversuche sind nur sehr eingeschränkt anwendbar, da es schwierig bis unmöglich ist, Verletzungssituationen vom Tier auf den Menschen zu übertragen. Auch ist es fraglich, in welchem Grade Tiermodelle die Biomechanik des Menschen repräsentieren. Kosten und insbesondere ethische Überlegungen tragen weiter dazu bei, dass solche Experimente heute nur noch selten und nur unter speziellen Bedingungen durchgeführt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  • AAAM (2005): AIS 2005: The injury scale (Eds. Gennarelli T and Wodzin E), Association of Advancement of Automotive Medicine

    Google Scholar 

  • Appel H, Krabbel G, Vetter D (2002): Unfallforschung, Unfallmechanik und Unfallrekonstruktion, Verlag Information Ambs GmbH, Kippenheim, Germany

    Google Scholar 

  • Baker S, O’Neill B (1976): The injury severity score: an update, J Trauma, Vol. 11, pp. 882-885

    Article  Google Scholar 

  • Bathe K (2007): Finite element procedures, Prentice-Hall India., ISBN 978-8120310759

    Google Scholar 

  • Beason D, Dakin G, Lopez R, Alonso J, Bandak F, Eberhardt A (2003): Bone mineral density correlates with fracture load in experimental side impacts of the pelvis, J Biomech, Vol. 36, pp. 219-227

    Article  Google Scholar 

  • Campbell F, Woodford M, Yates D (1994): A comparion of injury impairment scale scores and physician’s estimates of impairment following injury to the head, abdomen and lower limbs, Proc. 38th AAAM Conf.

    Google Scholar 

  • Carsten O, Day J (1988): Injury priority analysis; NHTSA Technical Report DOT HS 807 224

    Google Scholar 

  • Comptom C (2002): The use of public crash data in biomechanical research, in Accidental Injury - Biomechanics and Prevention (Eds. Nahum, Melvin), Springer Verlag, New York

    Google Scholar 

  • Damm R, Schnottale B, Lorenz B (2006): Evaluation of the biofidelity of the WorldSID and the ES-2 on the basis of PMHS data, Proc. IRCOBI Conf., pp. 225-237

    Google Scholar 

  • DSD (2000): PC-Crash, Dr. Steffan Datentechnik, Linz, Austria

    Google Scholar 

  • Denton ATD Inc., Milan, USA

    Google Scholar 

  • ESI (1998): Engineering Systems International S.A.; 20 rue Saarinen, 94578 Rungis Cedex; France, http://www.esi.fr

  • EDC (2006): http://www.edccorp.com/products/edcrash3.html

  • Ewing C et al. (1978): Dynamic response of human and primate head and neck to +Gy impact acceleration, Report DOT HS-803 058

    Google Scholar 

  • Gesac Inc., Boonsboro, USA

    Google Scholar 

  • Holzapfel G., Ogden R (2006): Mechanics of Biological Tissues, Springer Publ., Berlin, ISBN: 978-3-540-25194-1

    Book  Google Scholar 

  • IBB (2002): Carat 4.0, Ibb-Informatik, Mülheim/Mosel, Germany

    Google Scholar 

  • ISO WorldSID Task Group, http://www.worldsid.org

  • Iwamoto M, Kisanuki Y, Watanabe I, Furusu K, Miki K, Hasegawa J (2002): Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction, Proc. IRCOBI Conf., pp. 31- 42

    Google Scholar 

  • Liu IS (2002): Continuum Mechanics, Springer Publ., Berlin, ISBN: 978-3-540-43019-3

    MATH  Google Scholar 

  • Livermore (1999): Livermore Software Tech. Corp, http://www.lstc.com

  • Malliaris A (1985): Harm causation and ranking in car crashes; SAE paper No 85090

    Google Scholar 

  • Mecalog (2000): Radioss, Mecalog Sarl, France, http://www.radioss.com

  • Mertz HJ, Irwin AL, Prasad P (2003): Biomechanical and scaling bases for frontal and side impact Injury Assessment Reference Values, Stapp Car Crash J, Vol. 47, pp. 155-188

    Google Scholar 

  • Muser M, Zellmer H, Walz F, Hell W, Langwieder K (1999): Test procedure for the evaluation of the injury risk to the cervical spine in a low speed rear end impact, Proposal for the ISO/ TC22 N 2071 / ISO/TC22/SC10 (collison test procedures), http://www.agu.ch

  • Ono K, Kaneoka K (1997): Motion analysis of human cervical vertebrae during low speed rear impacts by the simulated sled, Proc. IRCOBI Conf., pp. 223 - 237

    Google Scholar 

  • Schmitt K-U, Muser M, Walz F, Niederer P (2002): On the role of fluid-structure interaction in the biomechanics of soft tissue neck injuries; Traffic Injury Prevention; Vol. 3 (1), pp. 65-73

    Article  Google Scholar 

  • Schmitt K-U, Muser M, Vetter D, Walz F (2003): Whiplash injuries: cases with a long period of sick leave need biomechanical assessment, European Spine, Vol. 12 (3), pp. 247-254

    Google Scholar 

  • Schmitt K-U, Beyeler F, Muser M, Niederer P (2004): A visco-elastic foam as head 70 Methoden der Trauma-Biomechanik restraint material - experiments and numerical simulations using a BioRID model, Traffic Injury Prevention, Vol. 9 (4), pp. 341-348

    Google Scholar 

  • Spitzer W, Skovron M, Salmi L, Cassiy J, Duranceau J, Suissa S, Zeiss E (1995): Scientific Monograph of the Quebec Task Force on Whiplash Associated Disorders: Redefining “whiplash” and its management, Spine, Vol. 20 (8S), pp. 3-73

    Google Scholar 

  • Stitzel J, Cormier J, Barretta J, Kennedy E, Smith E, Rath A, Duma S, Matsuoka F (2003): Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction, Stapp Car Crash Journal; Vol. 47, pp. 243-265

    Google Scholar 

  • Teasdale G, Jennett B. (1974): Assessment of coma and impaired consciousness. A practical scale, Lancet, Vol. 2, pp. 81-84

    Google Scholar 

  • TNO (2001): Madymo V6.0, TNO Automotive, Delft, The Netherlands

    Google Scholar 

  • Verriest J, Chapon A, Trauchesse R (1981): Cinephotogrammetrical study of procine thoracic response to belt applied load in frontal impact: comparison between living and dead subjects, SAE paper No. 811015

    Google Scholar 

  • Wismans J (1994): Injury Biomechanics, course notes, Eindhoven University of Technology, The Netherlands

    Google Scholar 

  • Zeidler F, Pletschen B, Mattern R, Alt B, Miksch T, Eichendorf W, Reiss S (1989): Development of a new injury cost scale; Proc. 33rd Annual Conf. AAAM

    Google Scholar 

  • Zienkiewicz O, Taylor R (1994): The finite element method; McGraw-Hill Book Company; London; ISBN 0-07-084175-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Uwe Schmitt .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitt, KU., Niederer, P.F., Muser, M.H., Walz, F. (2010). Methoden der Trauma-Biomechanik. In: Trauma-Biomechanik. VDI-Buch(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11596-7_2

Download citation

Publish with us

Policies and ethics