Skip to main content

The Evolution of Conventionally Fractionated ­External-Beam Radiotherapy: Contemporary Techniques (3D-CRT/IMRT/IGRT)

  • Chapter
  • First Online:
Robotic Radiosurgery. Treating Prostate Cancer and Related Genitourinary Applications
  • 688 Accesses

Abstract

This chapter will focus on the technological and clinical evolution of conventionally fractionated external-beam radiotherapy against prostate cancer. Advances in imaging and radiotherapy techniques during treatment planning and delivery, such as 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and image-guided radiotherapy (IGRT) resulted in a more accurate definition of the prostate target volume and reduced complications due to better sparing of adjacent normal tissues. In consequence, an increased therapeutic dose can now be delivered more safely with a significant superiority of biochemical disease-free survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vicini FA, Kestin LL, Martinez AA (1999) The importance of adequate follow-up in defining treatment success after external beam irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 45:553–561

    Article  PubMed  CAS  Google Scholar 

  2. Zelefsky MJ, Fuks Z, Hunt M et al (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116

    Article  PubMed  Google Scholar 

  3. Morgan PB, Hanlon AL, Horwitz EM et al (2007) Radiation dose and late failures in prostate cancer. Int J Radiat Oncol Biol Phys 67:1074–1081

    Article  PubMed  Google Scholar 

  4. Perez CA, Michalski JM, Purdy JA et al (2000) Three-dimensional conformal therapy or standard irradiation in localized carcinoma of prostate: preliminary results of a nonrandomized comparison. Int J Radiat Oncol Biol Phys 47:629–637

    Article  PubMed  CAS  Google Scholar 

  5. Kuban DA, Tucker SL, Dong L et al (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70:67–74

    Article  PubMed  Google Scholar 

  6. Cahlon O, Zelefsky MJ, Shippy A et al (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71:330–337

    Article  PubMed  CAS  Google Scholar 

  7. Zietman AL, Bae K, Slater JD et al (2010) Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: long-term results from proton radiation oncology group/American college of radiology 95–09. J Clin Oncol 28:1106–1111

    Article  PubMed  Google Scholar 

  8. Trichter F, Ennis RD (2003) Prostate localization using transabdominal ultrasound imaging. Int J Radiat Oncol Biol Phys 56:1225–1233

    Article  PubMed  Google Scholar 

  9. Chung PW, Haycocks T, Brown T et al (2004) On-line aSi portal imaging of implanted fiducial markers for the reduction of interfraction error during conformal radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 60:329–334

    Article  PubMed  Google Scholar 

  10. Hammoud R, Patel SH, Pradhan D et al (2008) Examining margin reduction and its impact on dose distribution for prostate cancer patients undergoing daily cone-beam computed tomography. Int J Radiat Oncol Biol Phys 71:265–273

    Article  PubMed  Google Scholar 

  11. Pilepich MV, Prasad SC, Perez CA (1982) Computed tomography in definitive radiotherapy of prostatic carcinoma, part 2: definition of target volume. Int J Radiat Oncol Biol Phys 8:235–239

    Article  PubMed  CAS  Google Scholar 

  12. De Meerleer GO, Vakaet LA, De Gersem WR et al (2000) Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison. Int J Radiat Oncol Biol Phys 47:639–648

    Article  PubMed  Google Scholar 

  13. Little DJ, Dong L, Levy LB et al (2003) Use of portal images and BAT ultrasonography to measure setup error and organ motion for prostate IMRT: implications for treatment margins. Int J Radiat Oncol Biol Phys 56:1218–1224

    Article  PubMed  Google Scholar 

  14. Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295

    Article  PubMed  Google Scholar 

  15. Kuban DA, Levy LB, Cheung MR et al (2011) Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? Int J Radiat Oncol Biol Phys 79:1310–1317

    Article  PubMed  Google Scholar 

  16. Nguyen PL, Chen RC, Hoffman KE et al (2010) Rectal dose-volume histogram parameters are associated with long-term patient-reported gastrointestinal quality of life after conventional and high-dose radiation for prostate cancer: a subgroup analysis of a randomized trial. Int J Radiat Oncol Biol Phys 78:1081–1085

    Article  PubMed  Google Scholar 

  17. Enke C, Ayyangar K, Saw CB, Zhen W, Thompson RB, Raman NV (2002) Inter-observer variation in prostate localization utilizing BAT. Int J Radiat Oncol 54:269

    Article  Google Scholar 

  18. McNair HA, Mangar SA, Coffey J et al (2006) A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys 65:678–687

    Article  PubMed  Google Scholar 

  19. Langen KM, Willoughby TR, Meeks SL et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71:1084–1090

    Article  PubMed  Google Scholar 

  20. King CR, Lehmann J, Adler JR et al (2003) CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility. Technol Cancer Res Treat 2:25–30

    PubMed  Google Scholar 

  21. Xie Y, Djajaputra D, King CR et al (2008) Intrafractional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 72:236–246

    Article  PubMed  Google Scholar 

  22. Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417

    Article  PubMed  Google Scholar 

  23. Kotte AN, Hofman P, Lagendijk JJ et al (2007) Intrafraction motion of the prostate during external-beam radiation therapy: analysis of 427 patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 69:419–425

    Article  PubMed  Google Scholar 

  24. Vapiwala N, Rajendran RR, Plastaras JP, Kassaee A (2008) Real-time prostate motion is highly variable among patients undergoing prostate radiotherapy (RT) with electromagnetic localization and tracking. Int J Radiat Oncol 72:S350–S351

    Article  Google Scholar 

  25. Khan DC, Tropper S, Liu P, Mantz CA (2009) Patient-reported reduction in acute GU and GI side effects for prostate cancer patients treated with 81 Gy IMRT using reduced PTV margins and electromagnetic tracking. Int J Radiat Oncol 75:S113–S114

    Article  Google Scholar 

  26. Wang X, Zhang X, Dong L et al (2004) Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy. Int J Radiat Oncol Biol Phys 60:1325–1337

    Article  PubMed  Google Scholar 

  27. Adler JR Jr, Chang SD (2009) Cyberknife image-guided radiosurgery. Neurosurgery 64:A1

    Article  PubMed  Google Scholar 

  28. Choi BO, Choi IB, Jang HS et al (2008) Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer 8:351

    Article  PubMed  Google Scholar 

  29. Collins BT, Vahdat S, Erickson K et al (2009) Radical cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol 2:1

    Article  PubMed  Google Scholar 

  30. Gagnon GJ, Nasr NM, Liao JJ et al (2009) Treatment of spinal tumors using cyberknife fractionated stereotactic radiosurgery: pain and quality-of-life assessment after treatment in 200 patients. Neurosurgery 64:297–306; discussion 306–297

    Article  PubMed  Google Scholar 

  31. Hara W, Loo BW Jr, Goffinet DR et al (2008) Excellent local control with stereotactic radiotherapy boost after external beam radiotherapy in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 71:393–400

    Article  PubMed  Google Scholar 

  32. Fuller DB, Naitoh J, Lee C et al (2008) Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys 70:1588–1597

    Article  PubMed  Google Scholar 

  33. King CR, Brooks JD, Gill H et al (2009) Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys 73:1043–1048

    Article  PubMed  Google Scholar 

  34. Koong AC, Le QT, Ho A et al (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 58:1017–1021

    Article  PubMed  Google Scholar 

  35. Katz AJ, Santoro MI (2009) Cyberknife radiosurgery for early carcinoma of the prostate: a three year experience. Int J Radiat Oncol 75:S312–S313

    Article  Google Scholar 

  36. Heijmen B, van de Water S, Breedveld S et al (2009) A variable circular collimator: a time-efficient alternative for a multi-leaf collimator in robotic radiosurgery? Int J Radiat Oncol 75(3 Suppl):S674–S675

    Article  Google Scholar 

  37. Fuller DB (2009) Comparison of Virtual HDR Prostate Treatment Plans Created with Fixed and Variable Aperture Collimators. Presented to the ASTRO 2009 Annual Meeting, Chicago, IL

    Google Scholar 

  38. Fan J, Li J, Price R, Jin L, Wang L, Chen L, Ma C (2010) MLC-based CyberKnife radiotherapy for prostate cancer. American Society of Radiation Oncology, Philadelphia

    Google Scholar 

  39. Kupelian PA, Willoughby TR, Reddy CA et al (2007) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int J Radiat Oncol Biol Phys 68:1424–1430

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuller, D.B. (2012). The Evolution of Conventionally Fractionated ­External-Beam Radiotherapy: Contemporary Techniques (3D-CRT/IMRT/IGRT). In: Ponsky, L., Fuller, D., Meier, R., Ma, C. (eds) Robotic Radiosurgery. Treating Prostate Cancer and Related Genitourinary Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11495-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11495-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11494-6

  • Online ISBN: 978-3-642-11495-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics