Skip to main content

Prostate Motion: Implications and Management Strategies

  • Chapter
  • First Online:
  • 672 Accesses

Abstract

Further developments in precision and high-dose radiotherapy for patients with prostate cancer demand a greater understanding of prostate motion and the ways it can be managed. Prostate movement can occur unpredictably both between fractions and during fractions of radiotherapy. Nearly 14% of conventional radiotherapy treatments are given when the prostate displacement exceeds the CTV-PTV margin [1]. This chapter discusses the three mechanisms of prostate motion: translational movements, rotational movements, and prostate deformation. We discuss the factors that induce or affect prostate motion, such as rectal movement, as well as ways of detecting and characterizing movement of the prostate with various imaging techniques. Imaging modalities that can detect prostate position prior to radiotherapy are reviewed including CT on rails, TomoTherapy®, fiducials with kV imaging using CyberKnife®, and electromagnetic transponders (Calypso®). Methods of adapting treatment to mitigate these effects are discussed. These include off-line corrections after imaging, online imaging, and correction and adaptive replanning. Conclusions regarding the standard of care for prostate cancer patients are presented, along with avenues for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Perks J, Turnbull H, Liu T et al (2011) Vector analysis of prostate patient setup with image-guided radiation therapy via kV cone beam computed tomography. Int J Radiat Oncol Biol Phys 79(3):915–919

    Article  PubMed  Google Scholar 

  2. Both S, Wang KK, Plastaras JP et al (2010) Real-time study of prostate intrafraction motion during external beam radiotherapy with daily endorectal balloon. Int J Radiat Oncol Biol Phys

    Google Scholar 

  3. Su Z, Zhang L, Murphy M, et al (2010) Analysis of prostate patient setup and tracking data: potential intervention strategies. Int J Radiat Oncol Biol Phys

    Google Scholar 

  4. Khoo VS, Dearnaley DP (2008) Question of dose, fractionation and technique: ingredients for testing hypofractionation in prostate cancer–the CHHiP trial. Clin Oncol (R Coll Radiol) 20:12–14

    Article  CAS  Google Scholar 

  5. Tree A, Khoo VS (2009) Treatment of early prostate cancer: radiotherapy including brachytherapy. Trends Urol Gynaecol Sex Health 14:18–23

    Article  Google Scholar 

  6. Dasu A (2007) Is the alpha/beta value for prostate tumors low enough to be safely used in clinical trials? Clin Oncol (R Coll Radiol) 19:289–301

    Article  CAS  Google Scholar 

  7. Hoskin PJ, Dearnaley DP (2007) Hypofractionation in clinical trials for prostate cancer. Clin Oncol (R Coll Radiol) 19:287–288

    Article  CAS  Google Scholar 

  8. Khoo VS (2005) Radiotherapeutic techniques for prostate cancer, dose escalation and brachytherapy. Clin Oncol (R Coll Radiol) 17:560–571

    Article  CAS  Google Scholar 

  9. Khoo VS (2010) Imaging for radiotherapy treatment planning, Chapter 52. In: Husband J, Reznek R (eds) Imaging in oncology, 3rd edn. Informa UK Ltd, London

    Google Scholar 

  10. Langen KM, Jones DT (2001) Organ motion and its management. Int J Radiat Oncol Biol Phys 50:265–278

    Article  PubMed  CAS  Google Scholar 

  11. Langen KM, Willoughby TR, Meeks SL et al (2008) Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 71:1084–1090

    Article  PubMed  Google Scholar 

  12. Tanyi JA, He T, Summers PA et al (2010) Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat Oncol Biol Phys 78:1579–1585

    Article  PubMed  Google Scholar 

  13. Adamson J, Wu Q (2010) Prostate intrafraction motion assessed by simultaneous kilovoltage fluoroscopy at ­megavoltage delivery I: clinical observations and pattern analysis. Int J Radiat Oncol Biol Phys 78:1563–1570

    Article  PubMed  Google Scholar 

  14. Kupelian P, Willoughby T, Mahadevan A et al (2007) Multi-institutional clinical experience with the Calypso® System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67:1088–1098

    Article  PubMed  Google Scholar 

  15. de Boer HC, van Os MJ, Jansen PP et al (2005) Application of the No Action Level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers. Int J Radiat Oncol Biol Phys 61:969–983

    Article  PubMed  Google Scholar 

  16. Wu Q, Ivaldi G, Liang J et al (2006) Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer. Int J Radiat Oncol Biol Phys 64:1596–1609

    Article  PubMed  Google Scholar 

  17. Kilby W, Dooley JR, Kuduvalli G et al (2010) The cyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat 9:433–452

    PubMed  CAS  Google Scholar 

  18. Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417

    Article  PubMed  Google Scholar 

  19. Padhani AR, Khoo VS, Suckling J et al (1999) Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. Int J Radiat Oncol Biol Phys 44:525–533

    Article  PubMed  CAS  Google Scholar 

  20. Kerkhof EM, van der Put RW, Raaymakers BW et al (2008) Variation in target and rectum dose due to prostate deformation: an assessment by repeated MR imaging and treatment planning. Phys Med Biol 53:5623–5634

    Article  PubMed  CAS  Google Scholar 

  21. Nichol AM, Warde PR, Lockwood GA et al (2010) A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys 77:1072–1078

    Article  PubMed  Google Scholar 

  22. Beard CJ, Kijewski P, Bussiere M et al (1996) Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys 34:451–458

    Article  PubMed  CAS  Google Scholar 

  23. Dawson LA, Litzenberg DW, Brock KK et al (2000) A comparison of ventilatory prostate movement in four treatment positions. Int J Radiat Oncol Biol Phys 48:319–323

    PubMed  CAS  Google Scholar 

  24. Cheung P, Sixel K, Morton G et al (2005) Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer. Int J Radiat Oncol Biol Phys 62:418–425

    Article  PubMed  Google Scholar 

  25. Rosewall T, Chung P, Bayley A et al (2008) A randomized comparison of interfraction and intrafraction prostate motion with and without abdominal compression. Radiother Oncol 88:88–94

    Article  PubMed  Google Scholar 

  26. Adamson J, Wu Q (2009) Inferences about prostate intrafraction motion from pre- and posttreatment volumetric imaging. Int J Radiat Oncol Biol Phys 75:260–267

    Article  PubMed  Google Scholar 

  27. Wilder RB, Chittenden L, Mesa AV et al (2010) A prospective study of intrafraction prostate motion in the prone vs. supine position. Int J Radiat Oncol Biol Phys 77:165–170

    Article  PubMed  Google Scholar 

  28. Sripadam R, Stratford J, Henry AM et al (2009) Rectal motion can reduce CTV coverage and increase rectal dose during prostate radiotherapy: a daily cone-beam CT study. Radiother Oncol 90:312–317

    Article  PubMed  Google Scholar 

  29. Heemsbergen WD, Hoogeman MS, Witte MG et al (2007) Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys 67:1418–1424

    Article  PubMed  CAS  Google Scholar 

  30. Quigley MM, Mate TP, Sylvester JE (2009) Prostate tumor alignment and continuous, real-time adaptive radiation therapy using electromagnetic fiducials: clinical and cost-utility analyses. Urol Oncol 27:473–482

    Article  PubMed  Google Scholar 

  31. Korreman S, Rasch C, McNair H et al (2010) The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol 94:129–144

    Article  PubMed  Google Scholar 

  32. Stutzel J, Oelfke U, Nill S (2008) A quantitative image quality comparison of four different image guided radiotherapy devices. Radiother Oncol 86:20–24

    Article  PubMed  Google Scholar 

  33. Owen R, Kron T, Foroudi F et al (2009) Comparison of CT on rails with electronic portal imaging for positioning of prostate cancer patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys 74:906–912

    Article  PubMed  Google Scholar 

  34. Wong JR, Gao Z, Uematsu M et al (2008) Interfractional prostate shifts: review of 1870 computed tomography (CT) scans obtained during image-guided radiotherapy using CT-on-rails for the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 72:1396–1401

    Article  PubMed  Google Scholar 

  35. Verellen D, Ridder MD, Linthout N et al (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7:949–960

    Article  PubMed  CAS  Google Scholar 

  36. Walter C, Boda-Heggemann J, Wertz H et al (2007) Phantom and in-vivo measurements of dose exposure by image-guided radiotherapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother Oncol 85:418–423

    Article  PubMed  Google Scholar 

  37. Burnet NG, Adams EJ, Fairfoul J et al (2010) Practical aspects of implementation of helical tomotherapy for intensity-modulated and image-guided radiotherapy. Clin Oncol (R Coll Radiol) 22:294–312

    Article  CAS  Google Scholar 

  38. Boswell S, Tome W, Jeraj R et al (2006) Automatic registration of megavoltage to kilovoltage CT images in helical tomotherapy: an evaluation of the setup verification process for the special case of a rigid head phantom. Med Phys 33:4395–4404

    Article  PubMed  Google Scholar 

  39. Welsh JS, Lock M, Harari PM et al (2006) Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy. Technol Cancer Res Treat 5:465–479

    PubMed  Google Scholar 

  40. Mackie TR (2006) History of tomotherapy. Phys Med Biol 51:R427–R453

    Article  PubMed  CAS  Google Scholar 

  41. Pinkawa M, Pursch-Lee M, Asadpour B et al (2008) Image-guided radiotherapy for prostate cancer. Implementation of ultrasound-based prostate localization for the analysis of inter- and intrafraction organ motion. Strahlenther Onkol 184:679–685

    Article  PubMed  Google Scholar 

  42. Scarbrough TJ, Golden NM, Ting JY et al (2006) Comparison of ultrasound and implanted seed marker prostate localization methods: Implications for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 65:378–387

    Article  PubMed  Google Scholar 

  43. McNair HA, Mangar SA, Coffey J et al (2006) A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys 65:678–687

    Article  PubMed  Google Scholar 

  44. Langen KM, Pouliot J, Anezinos C et al (2003) Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 57:635–644

    Article  PubMed  CAS  Google Scholar 

  45. Kong V, Lockwood G, Yan J et al (2010) The effect of registration surrogate and patient factors on the interobserver variability of electronic portal image guidance during prostate radiotherapy. Med Dosim

    Google Scholar 

  46. Litzenberg DW, Balter JM, Lam KL et al (2005) Retrospective analysis of prostate cancer patients with implanted gold markers using off-line and adaptive therapy protocols. Int J Radiat Oncol Biol Phys 63:123–133

    Article  PubMed  Google Scholar 

  47. Nichol AM, Brock KK, Lockwood GA et al (2007) A magnetic resonance imaging study of prostate deformation relative to implanted gold fiducial markers. Int J Radiat Oncol Biol Phys 67:48–56

    Article  PubMed  Google Scholar 

  48. van der Heide UA, Kotte AN, Dehnad H et al (2007) Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol 82:38–45

    Article  PubMed  Google Scholar 

  49. Kupelian PA, Willoughby TR, Meeks SL et al (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296

    Article  PubMed  Google Scholar 

  50. Moman MR, van der Heide UA, Kotte AN et al (2010) Long-term experience with transrectal and transperineal implantations of fiducial gold markers in the prostate for position verification in external beam radiotherapy; feasibility, toxicity and quality of life. Radiother Oncol 96:38–42

    Article  PubMed  Google Scholar 

  51. Mercuri AL, Lim Joon D, Khoo V et al (2008) The impact of prostate and seminal vesicle motion during prostate cancer radiotherapy on planning margins. Int J Radiat Oncol Biol Phys 72:312

    Article  Google Scholar 

  52. Nijkamp J, Pos FJ, Nuver TT et al (2008) Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. Int J Radiat Oncol Biol Phys 70:75–82

    Article  PubMed  Google Scholar 

  53. Barney BM, Lee RJ, Handrahan D et al (2011) Image-Guided Radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with Cone Beam Computed Tomography (CBCT). Int J Radiat Oncol Biol Phys 80(1):301–305

    Article  PubMed  Google Scholar 

  54. Moseley DJ, White EA, Wiltshire KL et al (2007) Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 67:942–953

    Article  PubMed  Google Scholar 

  55. Noel C, Parikh PJ, Roy M et al (2009) Prediction of intrafraction prostate motion: accuracy of pre- and post-treatment imaging and intermittent imaging. Int J Radiat Oncol Biol Phys 73:692–698

    Article  PubMed  Google Scholar 

  56. Litzenberg DW, Balter JM, Hadley SW et al (2006) Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys 65:548–553

    Article  PubMed  Google Scholar 

  57. Sawant A, Smith RL, Venkat RB et al (2009) Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking. Int J Radiat Oncol Biol Phys 74:575–582

    Article  PubMed  Google Scholar 

  58. Fallone BG, Murray B, Rathee S et al (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36:2084–2088

    Article  PubMed  CAS  Google Scholar 

  59. Lagendijk JJ, Raaymakers BW, Raaijmakers AJ et al (2008) MRI/linac integration. Radiother Oncol 86:25–29

    Article  PubMed  Google Scholar 

  60. Wachowicz K, Stanescu T, Thomas SD et al (2010) Implications of tissue magnetic susceptibility-related distortion on the rotating magnet in an MR-linac design. Med Phys 37:1714–1721

    Article  PubMed  CAS  Google Scholar 

  61. D’Amico AV, Manola J, Loffredo M et al (2001) A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys 51:1431–1436

    Article  PubMed  Google Scholar 

  62. van Lin EN, van der Vight LP, Witjes JA et al (2005) The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. Int J Radiat Oncol Biol Phys 61:278–288

    Article  PubMed  Google Scholar 

  63. Smitsmans MH, Pos FJ, de Bois J et al (2008) The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys 71:1279–1286

    Article  PubMed  Google Scholar 

  64. Aubry JF, Beaulieu L, Girouard LM et al (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–39

    Article  PubMed  Google Scholar 

  65. Nuver TT, Hoogeman MS, Remeijer P et al (2007) An adaptive off-line procedure for radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys 67:1559–1567

    Article  PubMed  Google Scholar 

  66. Lei Y, Wu Q (2010) A hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy. Phys Med Biol 55:2221–2234

    Article  PubMed  Google Scholar 

  67. Pawlowski JM, Yang ES, Malcolm AW et al (2010) Reduction of dose delivered to organs at risk in prostate cancer patients via image-guided radiation therapy. Int J Radiat Oncol Biol Phys 76:924–934

    Article  PubMed  Google Scholar 

  68. Skarsgard D, Cadman P, El-Gayed A et al (2010) Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers. Radiat Oncol 5:52

    Article  PubMed  Google Scholar 

  69. Graf R, Wust P, Budach V et al (2009) Potentials of on-line repositioning based on implanted fiducial markers and electronic portal imaging in prostate cancer radiotherapy. Radiat Oncol 4:13

    Article  PubMed  Google Scholar 

  70. McNair HA, Hansen VN, Parker CC et al (2008) A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy. Int J Radiat Oncol Biol Phys 71:41–50

    Article  PubMed  Google Scholar 

  71. Meijer GJ, de Klerk J, Bzdusek K et al (2008) What CTV-to-PTV margins should be applied for prostate irradiation? Four-dimensional quantitative assessment using model-based deformable image registration techniques. Int J Radiat Oncol Biol Phys 72:1416–1425

    Article  PubMed  Google Scholar 

  72. Engels B, Soete G, Verellen D et al (2009) Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning computed tomogram despite image guidance by implanted markers. Int J Radiat Oncol Biol Phys 74:388–391

    Article  PubMed  Google Scholar 

  73. Court LE, Dong L, Lee AK et al (2005) An automatic CT-guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer. Int J Radiat Oncol Biol Phys 62:154–163

    Article  PubMed  Google Scholar 

  74. Peng C, Ahunbay E, Chen G et al (2010) Characterizing interfraction variations and their dosimetric effects in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 79(3):909–914

    PubMed  Google Scholar 

  75. Ahunbay EE, Peng C, Holmes S et al (2010) Online adaptive replanning method for prostate radiotherapy. Int J Radiat Oncol Biol Phys 77:1561–1572

    Article  PubMed  Google Scholar 

  76. Thongphiew D, Wu QJ, Lee WR et al (2009) Comparison of online IGRT techniques for prostate IMRT treatment: adaptive vs repositioning correction. Med Phys 36:1651–1662

    Article  PubMed  Google Scholar 

  77. Davis BJ, Pisansky TM, Wilson TM et al (1999) The radial distance of extraprostatic extension of prostate carcinoma: implications for prostate brachytherapy. Cancer 85:2630–2637

    Article  PubMed  CAS  Google Scholar 

  78. Chao KK, Goldstein NS, Yan D et al (2006) Clinicopathologic analysis of extracapsular extension in prostate cancer: should the clinical target volume be expanded posterolaterally to account for microscopic extension? Int J Radiat Oncol Biol Phys 65:999–1007

    Article  PubMed  Google Scholar 

  79. Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295

    Article  PubMed  Google Scholar 

  80. Keall PJ, Sawant A, Cho B et al (2011) Electromagnetic-guided dynamic multileaf collimator tracking enables motion management for intensity-modulated arc therapy. Int J Radiat Oncol Biol Phys 79:312–320

    Article  PubMed  Google Scholar 

  81. Zhu X, Bourland JD, Yuan Y et al (2009) Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment. Phys Med Biol 54:N393–N401

    Article  PubMed  CAS  Google Scholar 

  82. Antypas C, Pantelis E (2008) Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol 53:4697–4718

    Article  PubMed  Google Scholar 

  83. King CR, Lehmann J, Adler JR et al (2003) CyberKnife radiotherapy for localized prostate cancer: rationale and technical feasibility. Technol Cancer Res Treat 2:25–30

    PubMed  Google Scholar 

  84. Coste-Maniere E, Olender D, Kilby W et al (2005) Robotic whole body stereotactic radiosurgery: clinical advantages of the Cyberknife integrated system. Int J Med Robot 1:28–39

    Article  PubMed  CAS  Google Scholar 

  85. Xie Y, Djajaputra D, King CR et al (2008) Intrafractional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys 72:236–246

    Article  PubMed  Google Scholar 

  86. Hossain S, Xia P, Chuang C et al (2008) Simulated real time image guided intrafraction tracking-delivery for hypofractionated prostate IMRT. Med Phys 35:4041–4048

    Article  PubMed  Google Scholar 

  87. Oermann EK, Slack RS, Hanscom HN et al (2010) A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to ­high-risk prostate cancer. Technol Cancer Res Treat 9:453–462

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tree, A., Khoo, V., van As, N. (2012). Prostate Motion: Implications and Management Strategies. In: Ponsky, L., Fuller, D., Meier, R., Ma, C. (eds) Robotic Radiosurgery. Treating Prostate Cancer and Related Genitourinary Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11495-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11495-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11494-6

  • Online ISBN: 978-3-642-11495-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics