Skip to main content
  • 1652 Accesses

Abstract

In this chapter, we apply the RG-factorizations to deal with practical stochastic models, and indicate concrete procedures of performance computation under a unified algorithmic framework. The processor-sharing queue is directly constructed as a block-structured Markov chain, and the fluid queue can be constructed as a block-structured Markov chain by means of the Laplace transform; while the negative-customer queue and the retrial queue need to combine the supplementary variable method and the RG-factorizations such that the boundary conditions are simplified as a blockstructured Markov chain or a block-structured Markov renewal process. We provide performance analysis of the practical stochastic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Processor-Sharing Queues

  1. Asmussen S. (2003). Applied Probability and Queues (Second Edition), Springer

    Google Scholar 

  2. Bansal N. (2003). Analysis of the M/G/1 processor-sharing queue with bulk arrivals. Operations Research Letters 31: 401–405

    MATH  MathSciNet  Google Scholar 

  3. Braband J. (1994). Waiting time distributions for M/M/N processor sharing queues. Stochastic Models 10: 533–548

    MATH  MathSciNet  Google Scholar 

  4. Braband J. (1995). Waiting time distributions for closed M/M/N processor sharing queues. Queueing Systems 19: 331–344

    MATH  MathSciNet  Google Scholar 

  5. Cheung S.K., H. van den Berg and R.J. Boucherie (2006). Insensitive bounds for the moments of the sojourn time distribution in the M/G/1 processor-sharing queue. Queueing Systems 53: 7–18

    MATH  MathSciNet  Google Scholar 

  6. Coffman E.G. and L. Kleinrock (1968). Feedback queueing models for time-shared systems. Journal of the Association for Computing Machinery 15: 549–576

    Google Scholar 

  7. Coffman E.G. Jr., R.R. Muntz and H. Trotter (1970). Waiting time distributions for processorsharing systems. Journal of the Association for Computing Machinery 17: 123–130

    MATH  MathSciNet  Google Scholar 

  8. Cohen J.W. (1979). The multiple phase service network with generalized processor sharing. Acta Informatica 12: 245–284

    MATH  MathSciNet  Google Scholar 

  9. Cohen J.W. (1982). The Single Server Queue (Second Edition), North-Holland Publishing Co.: Amsterdam-New York

    MATH  Google Scholar 

  10. Cohen J.W. (1984). Letter to the editor: The sojourn time in the GI/M/1 queue with processor sharing. Journal of Applied Probability 21: 437–442

    MathSciNet  Google Scholar 

  11. Egorova R., B. Zwart and O. Boxma (2006). Sojourn time tails in the M/D/1 processor sharing queue. Probability in the Engineering and Informational Sciences 20: 429–446

    MATH  MathSciNet  Google Scholar 

  12. Graham A. (1981). Kronecker Products and Matrix Calculus: with Applications, Ellis Horwood Limited

    Google Scholar 

  13. Guillemin F. and J. Boyer (2001). Analysis of the M/M/1 queue with processor sharing via spectral theory. Queueing Systems 39: 377–397

    MATH  MathSciNet  Google Scholar 

  14. Jagerman D.L., B. Sengupta (1991). The GIM/1 processor-sharing queue and its heavy traffic analysis. Stochastic Models 7: 379–395

    MATH  Google Scholar 

  15. Kim J. and B. Kim (2008). Concavity of the conditional mean sojourn time in the M/G/1 processor-sharing queue with batch arrivals. Queueing Systems 58: 57–64

    MATH  MathSciNet  Google Scholar 

  16. Kleinrock L. (1967). Time-shared systems: a theoretical treatment. Journal of the Association for Computing Machinery 14: 242–261

    MATH  MathSciNet  Google Scholar 

  17. Kleinrock L. (1976). Queueing Systems, Vol. II: Computer Applications, Wiley: New York

    MATH  Google Scholar 

  18. Kleinrock L., R. Muntz and E. Rodemich (1971). The processor-sharing queueing model for time-shared systems with bulk arrivals. Networks 1: 1–13

    Google Scholar 

  19. Li Q.L. and C. Lin (2006). The M/G/1 processor-sharing queue with disasters. Computers & Mathematics with Applications 51: 987–998

    MathSciNet  Google Scholar 

  20. Li Q.L., L. Liu and Z.T. Lian (2005). An RG-factorization approach for a BMAP/M/1 generalized processor-sharing queue. Stochastic Models 21: 507–530

    MATH  MathSciNet  Google Scholar 

  21. Masuyama H. and T. Takine (2003). Sojourn time distribution in a MAP/M/1 processorsharing queue. Operations Research Letters 31: 406–412

    MATH  MathSciNet  Google Scholar 

  22. Morrison J.A. (1985). Response-time distribution for a processor-sharing system. SIAM Journal on Applied Mathematics 45: 152–167

    MATH  MathSciNet  Google Scholar 

  23. Neuts M.F. (1981). Matrix-Geometric Solutions in Stochastic Models-An Algorithmic Approach, The Johns Hopkins University Press: Baltimore

    MATH  Google Scholar 

  24. Neuts M.F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker: New York

    MATH  Google Scholar 

  25. Núñez-Queija R. (2001). Sojourn times in non-homogeneous QBD processes with processor sharing. Stochastic Models 17: 61–92

    MATH  MathSciNet  Google Scholar 

  26. O’Donovan T.M. (1976). Conditional response times in M/M/1 processor-sharing models. Operations Research 24: 382–385

    MATH  MathSciNet  Google Scholar 

  27. Ramaswami V. (1984). The sojourn time in the GI/M/ 1queue with processor sharing. Journal of Applied Probability, 21: 437–442

    MATH  MathSciNet  Google Scholar 

  28. Rege K.M. and B. Sengupta (1993). The M/G/1 processor-sharing queue with bulk arrivals. In Modelling and Performance Evaluation of ATM Technology, Elsevier: Amsterdam, 417–432

    Google Scholar 

  29. Resing J.A.C., G. Hooghiemstra and M.S. Keane (1990). The M/G/1 processor sharing queue as the almost sure limit of feedback queues. Journal of Applied Probability 27: 913–918

    Google Scholar 

  30. Schassberger R. (1984). A new approach to the M/G/1 processor-sharing queue. Advances in Applied Probability 16: 202–213

    MATH  MathSciNet  Google Scholar 

  31. Sengupta B. and D.L. Jagerman (1985). A conditional response time of the M/M/1 processor-sharing queue. AT&T Technical Journal 64: 409–421

    MATH  MathSciNet  Google Scholar 

  32. Sericola B., F. Guillemin and J. Boyer (2005). Sojourn times in the M/PH/1 processor sharing queue. Queueing Systems 50: 109–130

    MATH  MathSciNet  Google Scholar 

  33. Yang Y. and C. Knessl (1993). Conditional sojourn time moments in the finite capacity GI??M??1 queue with processor-sharing service. SIAM Journal on Applied Mathematics 53: 1132–1193

    MATH  MathSciNet  Google Scholar 

  34. Yashkov S.F. (1987). Processor-sharing queues: some progress in analysis. Queueing Systems 2: 1–17

    MATH  MathSciNet  Google Scholar 

  35. Yashkov S.F. (1992). Mathematical problems in the theory of processor-sharing queues. Journal of Soviet Mathematics 58: 101–147

    Google Scholar 

  36. Yashkov S.F. and A.S. Yashkova (2007). Processor sharing: A survey of the mathematical theory. Automation and Remote Control 68: 1662–1731

    MATH  Google Scholar 

  37. Zwart A.P. and O.J. Boxma (2000). Sojourn time asymptotics in the M/G/1 processor sharing queue. Queueing Systems 35: 141–166

    MATH  MathSciNet  Google Scholar 

  38. Aissani A. (1994). A retrial queue with redundancy and unreliable server. Queueing Systems 17: 431–449

    MATH  MathSciNet  Google Scholar 

  39. Aissani A. and J.R. Artalejo (1998). On the single server retrial queue subject to breakdowns. Queueing Systems 30: 309–321

    MATH  MathSciNet  Google Scholar 

  40. Artalejo J.R. (1994). New results in retrial queueing systems with breakdowns of the servers. Statistics Neerlandica 48: 23–36

    MATH  MathSciNet  Google Scholar 

  41. Artalejo J.R. (1999). A classified bibliography of research on retrial queues: Progress in 1990–1999. Top 7: 187–211

    MATH  MathSciNet  Google Scholar 

  42. Artalejo J.R. and A. Gómez-Corral (1998). Unreliable retrial queues due to service interruptions arising from facsimile networks. Belgian Journal of Operations Research, Statistics and Computer Science 38: 31–41

    MATH  Google Scholar 

  43. Artalejo J.R. and A. Gómez-Corral (2008). Retrial Queueing Systems: A Computational Approach, Springer

    Google Scholar 

  44. Breuer L., A. Dudin and V. Klimenok (2002). A retrial BMAP??PH??N system. Queueing Systems 40: 433–457

    MATH  MathSciNet  Google Scholar 

  45. Chakravarthy S.R. and A. Dudin (2002). A multi-server retrial queue with BMAP arrivals and group services. Queueing Systems 42: 5–31

    MATH  MathSciNet  Google Scholar 

  46. Chakravarthy S.R. and A. Dudin (2003). Analysis of a retrial queuing model with MAP arrivals and two types of customers. Mathematical and Computer Modelling 37: 343–363

    MATH  MathSciNet  Google Scholar 

  47. Choi B.D., Y. Yang and B. Kim (1999). MAP 1 /MAP 2 /M/c retrial queue with guard channels and its applications to cellular networks. Top 7: 231–248

    MATH  MathSciNet  Google Scholar 

  48. Choi B.D., Y.H. Chung and A. Dudin (2001). The BMAP/SM/1 retrial queue with controllable operation modes. European Journal of Operational Research 131: 16–30

    MATH  MathSciNet  Google Scholar 

  49. Diamond J.E. and A.S. Alfa (1995). Matrix analytic methods for M/PH/1 retrial queues with buffers. Stochastic Models 11: 447–470

    MATH  MathSciNet  Google Scholar 

  50. Diamond J.E. and A.S. Alfa (1998). Matrix analytic methods for MAP/PH/1 retrial queues with buffers. Stochastic Models 14: 1151–1187

    MATH  MathSciNet  Google Scholar 

  51. Diamond J.E. and A.S. Alfa (1999). Matrix analytic methods for multi-server retrial queues with buffers. Top 7: 249–266

    MATH  MathSciNet  Google Scholar 

  52. Dudin A. and V.I. Klimenok (2000). A retrial BMAP/SM/1 system with linear requests. Queueing Systems 34: 47–66

    MATH  MathSciNet  Google Scholar 

  53. Falin G.I. (1990). A survey of retrial queues. Queueing Systems 7: 127–167

    MATH  MathSciNet  Google Scholar 

  54. Falin G.I. and J.G.C. Templeton (1997). Retrial Queues; Chapman & Hall: London

    MATH  Google Scholar 

  55. Gómez-Corral A. (2006). A bibliographical guide to the analysis of retrial queues through matrix analytic techniques. Annals of Operations Research 141: 163–191

    MATH  MathSciNet  Google Scholar 

  56. He Q.M., H. Li and Y.Q. Zhao (2000). Ergodicity of the BMAP/PH/s/s+k retrial queue with PH-retrial times. Queueing Systems 35: 323–347

    MATH  MathSciNet  Google Scholar 

  57. Horn R.A. and C.R. Johnson (1985). Matrix Analysis, Cambridge University Press

    Google Scholar 

  58. Kulkarni V.G. (1983). On queueing systems with retrials. Journal of Applied Probability 20: 380–389

    MATH  MathSciNet  Google Scholar 

  59. Kulkarni V.G. (1986). Expected waiting times in a multiclass batch arrival retrial queue. Journal of Applied Probability 23: 144–154

    MATH  MathSciNet  Google Scholar 

  60. Kulkarni V.G. and B.D Choi (1990). Retrial queues with server subject to breakdowns and repairs. Queueing Systems 7: 191–208

    MATH  MathSciNet  Google Scholar 

  61. Kulkarni V.G. and H.M. Liang (1997). Retrial queues revisited. In Frontiers in queueing, Probab. Stochastics Ser., CRC, Boca Raton, FL, 19–34

    Google Scholar 

  62. Li Q.L., Y. Ying and Y.Q. Zhao (2006). A BMAP/G/1 retrial queue with a server subject to breakdowns and repairs. Annals of Operations Research 141: 233–270

    MATH  MathSciNet  Google Scholar 

  63. Liang H.M. and V. G. Kulkarni (1993). Monotonicity properties of single-server retrial queues. Stochastic Models 9: 373–400

    MATH  MathSciNet  Google Scholar 

  64. Liang H.M. and V. G. Kulkarni (1993). Stability condition for a single-server retrial queue. Advances in Applied Probability 25: 690–701

    MATH  MathSciNet  Google Scholar 

  65. Lucantoni D.M. (1991). New results on the single server queue with a batch Markovian arrival process. Stochastic Models 7: 1–46

    MATH  MathSciNet  Google Scholar 

  66. Neuts M.F. and B.M. Rao (1990). Numerical investigation of a multiserver retrial model. Queueing Systems 7: 169–190

    MATH  Google Scholar 

  67. Shang W., L. Liu and Q.L. Li (2006). Tail asymptotics for the queue length in an M/G/1 retrial queue. Queueing Systems 52: 193–198

    MATH  MathSciNet  Google Scholar 

  68. Wang J., J. Cao and Q.L. Li (2001). Reliability analysis of the retrial queue with server breakdowns and repairs. Queueing Systems 38: 363–380

    MATH  MathSciNet  Google Scholar 

  69. Yang T. and H. Li (1994). The M/G/1 retrial queue with the server subject to starting failures. Queueing Systems 16: 83–96

    MATH  Google Scholar 

  70. Yang T. and J.G.C. Templeton (1987). A survey on retrial queues. Queueing Systems 2: 201–233

    MATH  MathSciNet  Google Scholar 

Fluid Queues

  1. Adan I.J.B.F. and J.A.C. Resing (1996). Simple analysis of a fluid queue driven by an M/M/1 queue. Queueing Systems 22: 171–174

    MATH  MathSciNet  Google Scholar 

  2. Adan I.J.B.F., J.A.C. Resing and V.G. Kulkarni (2003). Stochastic discretization for the long-run average reward in fluid models. Probability in the Engineering and Informational Sciences 17: 251–265

    MATH  MathSciNet  Google Scholar 

  3. Ahn S. and V. Ramaswami (2003). Fluid flow models and queues — a connection by stochastic coupling. Stochastic Models 19: 325–348

    MATH  MathSciNet  Google Scholar 

  4. Anick D., D. Mitra and M.M. Sondhi (1982). Stochastic theory of a data-handling system with multiple sources. The Bell System Technical Journal 61: 1871–1894

    MathSciNet  Google Scholar 

  5. Asmussen S. (1995). Stationary distributions for fluid flow models with or without Brownian noise. Stochastic Models 11: 21–49

    MATH  MathSciNet  Google Scholar 

  6. Barbot N., B. Sericola and M. Telek (2001). Distribution of busy period in stochastic fluid models. Stochastic Models 17: 407–427

    MATH  MathSciNet  Google Scholar 

  7. Barlow M.T., L.C.G. Rogers and D. Williams (1980). Wiener-Hopf factorization for matrices. In Séminaire de probabilités XIV, Lecture Notes in Mathematics 784, Springer: Berlin, 324–331

    Google Scholar 

  8. Blaabjerg S., H. Andersson and H. Andersson (1995). Approximating heterogeneous fluid queue with a birth-death fluid queue. IEEE Transactions on Communications 43: 1884–1887

    Google Scholar 

  9. Soares A. da Silva and G. Latouche (2002). Further results on the similarity between fluid queues and QBDs. In Matrix Analytic Methods Theory and Applications, G. Latouche and P.G. Taylor (eds.), World Scientific, 89–106

    Google Scholar 

  10. Guillemin F. and B. Sericola (2007). Stationary analysis of a fluid queue driven by some countable state space Markov chain. Methodology and Computing in Applied Probability 9: 521–540

    MATH  MathSciNet  Google Scholar 

  11. Karandikar R.L. and V.G. Kulkarni (1995). Second-order fluid flow models: reflected Brownian motion in a random environment. Operations Research 43: 77–88

    MATH  Google Scholar 

  12. Konovalov V. (1998). Fluid queue driven by a GI/G/1 queue, stable problems for stochastic models. Journal of Mathematical Sciences 91: 2917–2930

    MATH  MathSciNet  Google Scholar 

  13. Kontovasilis K.P. and M.M. Mitrou (1995). Markov-modulated traffic with nearly complete decomposability characteristics and associated fluid queueing models. Advances in Applied Probability 27: 1144–1185

    MATH  MathSciNet  Google Scholar 

  14. Kulkarni V.G. (1997). Fluid models for single buffer systems. In Frontiers in Queueing: Models and Applications in Science and Engineering, J. Dhashalow (ed.), CRC Press: Boca Raton, 321–338

    Google Scholar 

  15. Kulkarni V.G. and E. Tzenova (2002). Mean first passage times in fluid queues. Operations Research Letters 30: 308–318

    MATH  MathSciNet  Google Scholar 

  16. Lenin R.B. and P.R. Parthasarathy (2000). A computational approach for fluid queues driven by truncated birth-death process. Methodology and Computing in Applied Probability 2: 373–392

    MATH  MathSciNet  Google Scholar 

  17. Li Q.L., L. Liu and W. Shang (2008). Heavy-tailed asymptotics for a fluid model driven by an M/G/1 queue. Performance Evaluation 65: 227–240

    Google Scholar 

  18. Li Q.L. and Y.Q. Zhao (2005). Block-structured fluid models driven by level dependent QBD processes with either infinite levels or finite levels. Stochastic Analysis and Applications 23: 1087–1112

    MATH  MathSciNet  Google Scholar 

  19. Masuyama H. and T. Takine (2007). Multiclass Markovian fluid queues. Queueing Systems 56, 143–155

    MATH  MathSciNet  Google Scholar 

  20. Mitra D. (1988). Stochastic theory of a fluid model of producers and consumers coupled by a buffer. Advances in Applied Probability 20: 646–676

    MATH  MathSciNet  Google Scholar 

  21. Parthasarathy P.R., K.V. Vijayashree and R.B. Lenin (2002). An M/M/1 driven fluid queue — ontinued fraction approach. Queueing Systems 42: 189–199

    MATH  MathSciNet  Google Scholar 

  22. Parthasarathy P.R., B. Sericola and K.V. Vijayashree (2005). Transient analysis of a fluid queue driven by a birth and death process suggested by a chain sequence. Journal of Applied Mathematics and Stochastic Analysis 2005: 143–158

    Google Scholar 

  23. Rabehasaina L. and B. Sericola (2004). A second-order Markov-modulated fluid queue with linear service rate. Journal of Applied Probability 41: 758–777

    MATH  MathSciNet  Google Scholar 

  24. Ramaswami V. (1999). Matrix analytic methods for stochastic fluid flows. In: ITC-16, P. Key and D. Smith (eds.), Elsevier Science B.V., 1019–1030

    Google Scholar 

  25. Rogers L.C.G. (1994). Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains. The Annals of Applied Probability 4: 390–413

    MATH  MathSciNet  Google Scholar 

  26. Sericola B. and B. Tuffin (1999). A fluid queue driven by a Markovian queue. Queueing Systems 31: 253–264

    MATH  Google Scholar 

  27. Stern T.E. and A.I. Elwalid (1991). Analysis of separable Markov-modulated rate models for information-handling systems. Advances in Applied Probability 23: 105–139

    MATH  MathSciNet  Google Scholar 

  28. Doorn E.A. van, A.A. Jagers and J.S.J. de Wit (1987). A fluid reservoir regulated by a birth-death process. Stochastic Models 4: 457–472

    Google Scholar 

  29. van Lierde S., A. da Silva Soares and G. Latouche (2008). Invariant measures for fluid queues. Stochastic Models 24: 133–151

    MATH  MathSciNet  Google Scholar 

  30. Virtamo J. and I. Norros (1994). Fluid queue driven by an M/M/1 queue. Queueing Systems 16: 373–386

    MATH  Google Scholar 

Queues with Negative Customers

  1. Anisimov V.V. and J.R. Artalejo (2001). Analysis of Markov multiserver retrial queues with negative arrivals. Queueing Systems 39: 157–182

    MATH  MathSciNet  Google Scholar 

  2. Artalejo J.R. (2000). G-networks: A versatile approach for work removal in queueing networks. European Journal of Operational Research 126: 233–249

    MATH  MathSciNet  Google Scholar 

  3. Artalejo J.R. and A. Gómez-Corral (1998). Generalized birth and death processes with applications to queues with repeated attempts and negative arrivals. OR Spektrum 20: 223–233

    Google Scholar 

  4. Bayer N. and O.J. Boxma (1996). Wiener-Hopf analysis of an M/G/1 queue with negative customers and of a related class of random walks. Queueing Systems 23: 301–316

    Google Scholar 

  5. Boucherie R.J. and O.J. Boxma (1995). The workload in the M/G/1 queue with work removal. Probability in the Engineering and Informational Sciences 10: 261–277

    MathSciNet  Google Scholar 

  6. Chao X. (1995). A queueing network model with catastrophes and product form solution. Operations Research Letters 18: 75–79

    MATH  MathSciNet  Google Scholar 

  7. Chao X., M. Miyazawa and M. Pinedo (1999). Queueing Networks: Customers, Signals, and Product Form Solutions, Wiley, Chichester

    MATH  Google Scholar 

  8. Dudin A. and S. Nishimura (1999). A BMAP/SM/1 queueing system with Markovian arrival input of disasters. Journal of Applied Probability 36: 868–881

    MATH  MathSciNet  Google Scholar 

  9. Dudin A. and O. Semenova (2004). A stable algorithm for stationary distribution calculation for a BMAP/SM/1 queueing system with Markovian arrival input of disasters. Journal of Applied Probability 41: 547–556

    MATH  MathSciNet  Google Scholar 

  10. Gelenbe E. (1991). Production-form queueing networks with negative and positive customers. Journal of Applied Probability 28: 656–663

    MATH  MathSciNet  Google Scholar 

  11. Gelenbe E. (1993). G-networks with triggered customer movement. Journal of Applied Probability 30: 742–748

    MATH  MathSciNet  Google Scholar 

  12. Gelenbe E. (1994). G-networks: a unifying model for neural and queueing networks. Annals of Operations Research 48: 433–461

    MATH  MathSciNet  Google Scholar 

  13. Gelenbe E., P. Glynn and K. Sigman (1991). Queues with negative arrivals. Journal of Applied Probability 28: 245–250

    MATH  MathSciNet  Google Scholar 

  14. Gelenbe E. and G. Pujolle (1998). Introduction to Queueing Networks (Second Edition), Wiley: Chichester

    Google Scholar 

  15. Gelenbe E. and R. Schassberger (1992). Stability of product form G-networks. Probability in the Engineering and Informational Sciences 6: 271–276

    MATH  Google Scholar 

  16. Harrison P.G. and E. Pitel (1993). Sojourn times in single-server queue with negative customers. Journal of Applied Probability 30: 943–963

    MATH  MathSciNet  Google Scholar 

  17. Harrison P.G. and E. Pitel (1995). Response time distributions in tandem G-networks. Journal of Applied Probability 32: 224–247

    MATH  MathSciNet  Google Scholar 

  18. Harrison P.G. and E. Pitel (1996). The M/G/1 queue with negative customers. Advances in Applied Probability 28: 540–566

    MATH  MathSciNet  Google Scholar 

  19. Henderson W. (1993). Queueing networks with negative customers and negative queue lengths. Journal of Applied Probability 30: 931–942

    MATH  MathSciNet  Google Scholar 

  20. Jain G. and K. Sigman (1996). A Pollaczek-Khintchine formula for M/G/1 queues with disasters. Journal of Applied Probability 33: 1191–1200

    MATH  MathSciNet  Google Scholar 

  21. Li Q.L. and Y.Q. Zhao (2004). A MAP/G/1 queue with negative customers. Queueing Systems 47: 5–43

    MATH  MathSciNet  Google Scholar 

  22. Pitel E. (1994). Queues with Negative Customers, Ph.D. Thesis, Imperial College, London

    Google Scholar 

  23. Serfozo R. (1999). Introduction to Stochastic Networks, Springer-Verlag: New York

    MATH  Google Scholar 

  24. Shin Y.W. (2007). Multi-server retrial queue with negative customers and disasters. Queueing Systems 55: 223–237

    MATH  MathSciNet  Google Scholar 

  25. Zhu Y. and Z.G. Zhang (2004). M/G/1 queues with services of both positive and negative customers. Journal of Applied Probability 41: 1157–1170

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, QL. (2010). Examples of Practical Applications. In: Constructive Computation in Stochastic Models with Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11492-2_7

Download citation

Publish with us

Policies and ethics