Advertisement

Convergence of Mobile Robots with Uniformly-Inaccurate Sensors

  • Kenta Yamamoto
  • Taisuke Izumi
  • Yoshiaki Katayama
  • Nobuhiro Inuzuka
  • Koichi Wada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5869)

Abstract

We consider the convergence problem of autonomous mobile robots with inaccurate sensors, which may return the erroneous location of other robots. In this paper, we newly introduce a uniform error model, which is a restricted variant of the original observation-error model proposed by Cohen and Peleg [4]. The degree of an observation error is characterized by distance errors and angle errors. While the original model (non-uniform model) allows that two or more points can have different error degrees, the uniform error model assumes that the same amount of error degree is incurred to all observed points in a single observation. The main focus of our study is to reveal how much such uniformity expands the feasibility of the convergence. In the non-uniform error model, it has been shown that no algorithm can achieve the convergence if the maximum error angle is more than or equal to π/3. This paper shows that the convergence problem is solvable under the uniform error if the maximum error angle is less than π/ 2. We also prove that there is no convergence algorithm for the maximum error angle more than or equal to π/2 even in the uniform error model, which implies the optimality of our algorithm in the sense of angle errors.

Keywords

Convergence problem Observation error Uniform-error model smallest enclosing circle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distreibuted memoryless point convergence algorithm for mobile robots with lemited visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  2. 2.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM Journal on Computing 34(6), 1516–1528 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movement. SIAM Journal on Computing 38, 276–302 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoretical Computer Science 337(1-3), 147–168 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: An optimal result. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass models and gathering algorithms for autonomous mobile robots. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theoretical Computer Science 384(2-3), 222–231 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Souissi, S., Defago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kenta Yamamoto
    • 1
  • Taisuke Izumi
    • 1
  • Yoshiaki Katayama
    • 1
  • Nobuhiro Inuzuka
    • 1
  • Koichi Wada
    • 1
  1. 1.Nagoya Institute of TechnologyJapan

Personalised recommendations