Advertisement

Black Hole Search in Directed Graphs

  • Jurek Czyzowicz
  • Stefan Dobrev
  • Rastislav Královič
  • Stanislav Miklík
  • Dana Pardubská
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5869)

Abstract

We consider the problem of cooperative network exploration by agents under the assumption that there is a harmful host present in the network that destroys the incoming agents without outside trace – the so-called black hole search problem.

Many variants of this problem have been studied, with various assumptions about the timing, agents’ knowledge about the topology, means of inter-agent communication, amount of writable memory in vertices, and other parameters. However, all this research considered undirected graphs only, and relied to some extent on the ability of an agent to mark an edge as safe immediately after having traversed it.

In this paper we study directed graphs where this technique does not apply, and show that the consequence is an exponential gap: While in undirected graphs Δ + 1 agents are always sufficient, in the directed case at least 2Δ agents are needed in the worst case, where Δ is in-degree of the black hole. This lower bound holds also in the case of synchronous agents. Furthermore, we ask the question What structural information is sufficient to close this gap? and show that in planar graphs with a planar embedding known to the agents, 2Δ + 1 agents are sufficient, and 2Δ agents are necessary.

Keywords

Black Hole Directed Graph Planar Graph Mobile Agent Safe Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Dordrecht (2003)zbMATHGoogle Scholar
  2. 2.
    Arkin, E., Bender, M., Fekete, S., Mitchell, J.: The freeze-tag problem: how to wake up a swarm of robots. In: 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 568–577 (2002)Google Scholar
  3. 3.
    Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proc. 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA 2002), pp. 200–209 (2002)Google Scholar
  4. 4.
    Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85 (1994)Google Scholar
  5. 5.
    Bender, M., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. 35th Symp. on Foundations of Computer Science (FOCS 1994), pp. 75–85 (1994)Google Scholar
  6. 6.
    Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: Exploring and mapping directed graphs. In: STOC, pp. 269–278 (1998)Google Scholar
  7. 7.
    Budach, L.: On the solution of the labyrinth problem for finite automata. Elektronische Informationsverarbeitung und Kybernetic 11, 661–672 (1975)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Transactions on Algorithms 4(4) (2008)Google Scholar
  9. 9.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in tree networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 67–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Proceedings: 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, October 22–24, vol. 1, pp. 355–361 (1990); Formerly called the Annual Symposium on Switching and Automata Theory. IEEE catalog number 90CH29256. Computer Society order no. 2082Google Scholar
  11. 11.
    Dobrev, S., Flocchini, P., Kralovic, R., Prencipe, G., Ruzicka, P., Santoro, N.: Optimal search for a black hole in common interconnection networks. Networks 47(2), 61–71 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Finding a black hole in an arbitrary network: optimal mobile agents protocols. In: Proc. of 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), pp. 153–162 (2002)Google Scholar
  13. 13.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Finding a black hole in an arbitrary network: optimal mobile agents protocols. In: Proc. of 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), pp. 153–162 (2002)Google Scholar
  14. 14.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dobrev, S., Flocchini, P., Santoro, N.: Improved bounds for optimal black hole search in a network with a map. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 111–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Esparza, O., Soriano, M., Munoz, J., Forne, J.: Host revocation authority: A way of protecting mobile agents from malicious hosts. In: Cueva Lovelle, J.M., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fraigniaud, P., Ilcinkas, D.: Digraph exploration with little memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2-3), 331–344 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Impact of memory size on graph exploration capability. Discrete Applied Mathematics 156(12), 2310–2319 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput. 206(11), 1276–1287 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 585–594. SIAM, Philadelphia (2007)Google Scholar
  24. 24.
    Greenberg, M., Byington, J., Harper, D.G.: Mobile agents and security. IEEE Commun. Mag. 36(7), 76–85 (1998)CrossRefGoogle Scholar
  25. 25.
    Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Gecseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 433–444. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  26. 26.
    Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2), 277–296 (2000)CrossRefzbMATHGoogle Scholar
  27. 27.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 200–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Oppliger, R.: Security issues related to mobile code and agent-based systems. Computer Communications 22(12), 1165–1170 (1999)CrossRefGoogle Scholar
  30. 30.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jurek Czyzowicz
    • 1
  • Stefan Dobrev
    • 2
  • Rastislav Královič
    • 3
  • Stanislav Miklík
    • 3
  • Dana Pardubská
    • 3
  1. 1.Université du Québec en OutaouaisGatineauCanada
  2. 2.Slovak Academy of SciencesBratislavaSlovakia
  3. 3.Comenius UniversityBratislavaSlovakia

Personalised recommendations