A New Polynomial Silent Stabilizing Spanning-Tree Construction Algorithm

  • Alain Cournier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5869)


Stabilizing algorithms can automatically recover their specifications from an arbitrary configuration in finite time. They are therefore well-suited for dynamic and failure prone environments. A silent algorithm always reaches a terminal configuration in a finite time. The spanning-tree construction is a fundamental task in distributed systems which forms the basis for many other network algorithms (like Token Circulation, Routing or Propagation of Information with Feedback). In this paper we present a silent stabilizing algorithm working in n 2 steps (where n is the number of processors in the network) with a distributed daemon, without any fairness assumptions. This complexity is totally independent of the initial values present in the network. So, this improves all the previous results of the literature.


Distributed systems Fault-tolerance Silent algorithms Spanning-tree construction Stabilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  2. 2.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communication of the Association of the Computing Machinery 17, 643–644 (1974)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in tree networks. In: Arora, A. (ed.) WSS, pp. 78–85. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  4. 4.
    Berge, C.: Graphes et hypergraphes. Dunod (1985)Google Scholar
  5. 5.
    Aho, A., Ullman, J.: Foundations of Computer Science. W.H. Freeman and Company, New York (1992)zbMATHGoogle Scholar
  6. 6.
    Cournier, A., Devismes, S., Villain, V.: A Snap-Stabilizing DFS with a Lower Space Requirement. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 33–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Cournier, A., Devismes, S., Villain, V.: Snap-Stabilizing PIF and Useless Computations. In: ICPADS (1), pp. 39–48. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  8. 8.
    Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing 7(1), 3–16 (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, N.S., Yu, H.P., Huang, S.T.: A Self-Stabilizing Algorithm for Constructing Spanning Trees. Inf. Process. Lett. 39(3), 147–151 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huang, S.T., Chen, N.S.: A Self-Stabilizing Algorithm for Constructing Breadth-First Trees. Inf. Process. Lett. 41(2), 109–117 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cournier, A., Datta, A.K., Petit, F., Villain, V.: Self-Stabilizing PIF Algorithm in Arbitrary Rooted Networks. In: ICDCS, pp. 91–98 (2001)Google Scholar
  12. 12.
    Cournier, A., Datta, A.K., Petit, F., Villain, V.: Snap-Stabilizing PIF Algorithm in Arbitrary Networks. In: 22th IEEE International Conference on Distributed Computing Systems (ICDCS 2002), Vienna, July 2002, pp. 199–208. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  13. 13.
    Cournier, A., Devismes, S., Villain, V.: Snap-Stabilizing Detection of Cutsets. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 488–497. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Devismes, S.: A Silent Self-Stabilizing Algorithm for finding Cut-nodes and Bridges. Parallel Processing Letters 49(1-2), 183–198 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kosowski, A., Kuszner, L.: A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 75–82. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Burman, J., Kutten, S.: Time optimal asynchronous self-stabilizing spanning tree. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Gaertner, F.C.: A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms. Technical report, Swiss Federal Institute of Technology, EPFL (2003)Google Scholar
  18. 18.
    Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal space. In: Kulkarni, S., Schiper, A. (eds.) SSS 2008. LNCS, vol. 5340, pp. 109–123. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Arora, A., Gouda, M.G.: Distributed reset. IEEE Trans. Computers 43(9), 1026–1038 (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election. IEEE Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alain Cournier
    • 1
  1. 1.MISUniversité de PicardieAmiensFrance

Personalised recommendations